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ABSTRACT 
It is well known that continuous system motion equations are based on partial differential 

equations. Their solutions are more difficult than discrete systems’ equations of motions, 

especially if the equations of motions are non-linear. Different efforts have been implemented to 
solve non-linear partial differential equations for a long time. Researchers have tried to use 
different methods for this purpose. Modified Adomian Decomposition Method (MADM) is a 

promising method and has been applied to solve non-linear partial differential equations 
obtained in engineering systems. In this article, MADM is used to investigate the forced 

vibration of the Euler-Bernoulli (EB) cracked beams under a moving load. For this purpose, 
MADM was used to create the mentioned vibration response. This model consists of moving load 
acting on two continuous segments where the crack is modeled as a rotational spring with 

sectional flexibility. For this purpose, the equations of motion with a fourth order have been 
used. They are non-homogenous partial differential equations, which were used for 

mathematical modeling. Dynamic response was analyzed to understand the cracked supported 
beam beneath the moving load, which revealed the impact of concentrated force on crack 
location as well as extension. Some numerical results were presented by using MATLAB 

software to compute the vibration analysis and plot the deflection. The solution and its 
methodology were verified with the help of some studies. Results have shown that MADM is 

effective and accurate for vibration analysis of cracked beams under a moving load. 
 

 ملخصال
معادلات   من  أصعب  وحلولها  الجزئية.  التفاضلية  المعادلات  على  تعتمد  المستمرة  النظام  حركة  معادلات  أن  المعروف  من 
المعادلات   لحل  مختلفة  جهود  بذل  تم  لقد  خطية.  الحركات غير  معادلات  كانت  إذا  خاصة  المنفصلة،  الأنظمة  في  الحركات 

التفاضلية الجزئية غير الخطية لفترة طويلة. وقد حاول الباحثون استخدام طرق مختلفة لهذا الغرض. تعد طريقة التحلل الآدومي  
 ( في  MADMالمعدلة  عليها  الحصول  تم  التي  الخطية  الجزئية غير  التفاضلية  المعادلات  لحل  تطبيقها  وتم  واعدة  ( طريقة 

استخدام   تم  المقالة،  هذه  في  الهندسية.  المعدلةالأنظمة  إويلر    الآدومي  نوع  من  المتشققة  للعتبات  القسري  الاهتزاز   –لفحص 

لإنشاء استجابة الاهتزاز المذكورة. يتكون هذا   الآدومي المعدلةتحت حمل متحرك. ولهذا الغرض، تم استخدام   EB) )  بؤنولي
النموذج من حمل متحرك يعمل على جزأين متواصلين حيث تم تصميم الشق على شكل زنبرك دوراني يتمتع بمرونة مقطعية.  

تم   والتي  متجانسة،  غير  جزئية  تفاضلية  معادلات  وهي  الرابعة.  الدرجة  من  الحركة  معادلات  استخدام  تم  الغرض  ولهذا 
والتي   المتحرك،  الحمل  أسفل  المتشققة  المدعومة  الحزمة  لفهم  الديناميكية  الاستجابة  تحليل  تم  الرياضية.  للنمذجة  استخدامها 
كشفت عن تأثير القوة المركزة على موقع الشق بالإضافة إلى الامتداد. تم تقديم بعض النتائج العددية باستخدام برنامج الماتلاب 

(MATLAB  لحساب تحليل الاهتزازات ورسم الانحراف. تم التحقق من الحل ومنهجيته بمساعدة بعض الدراسات. أظهرت )
تحت الحمل المتحرك  ةودقيقة  فعال  الآدومي المعدلةالنتائج أن    .في تحليل اهتزاز العتبات المتشققة 

Keywords: Modified Adomian Decomposition Method  (MADM), crack detection, dynamic response, moving load, 

Euler Bernoulli beam. 
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1. INTRODUCTION 
Vibration of bridges under moving loads is a significant topic and a challenge both for 

mechanical and structural engineers. Moving load causes substantial deflection and stress when 

it is compared to a similar static load. Cracks may occur on a bridge as a result of these kinds of 
stresses. Cracks are the major reason behind bridge structure failures. When a crack initiates in a 

bridge structure, it loses its stiffness, reducing the lifetime of the bridge structure. It is probable 
to predict the crack depth and its location based on the changes in vibration parameters. From the 
earliest days of railroad development during the last century, bridge vibration under a moving 

load has attracted the attention of numerous researchers  [1-13]. (Fryba, 1934) conducted a 
comprehensive vibration study of a beam under different kinds of moving loads [14]. (Reis et al., 

2008) analyzed the bridge structures' dynamic responses under moving loads [15]. (Olsson, 
1991) studied the EB beam in situations where it was underneath the moving loads by applying 
modal analysis using accurate shapes [16]. (Mao, 2012) also studied the uniform cracked EB 

beams' free vibrations [17]. (Mofid & Shadnam, 2000) analyzed the dynamic responses of EB 
beneath the movable mass using developed discrete elements [18]. (Parhi and Behera,1997) 

investigated a damage circular shaft and its dynamic deflection under a moving load applying the 
Runge-Kutta procedure [19]. (Bilello & Bergman) [8] studied the damaged EB beam responses 
theoretically and experimentally under the moving loads. They modeled the damage using 

rotational springs after evaluating their compliance applying mechanics principle of linear elastic 
fractures. Their analysis was based on an unknown deflection and its series expansion, also 

called as eigenfunction of a beam. (Esmailzadeh & Ghorashi, 1995) investigated the beam 
vibration in case of partly distributed uniform moving mass [20]. (Jena & Parhi, 2016) analyzed 
a cracked cantilever beam and its response to moving load applying continuum mechanics in 

addition to Duhamel integral [21]. Moreover, (Law & Zhu, 2004) analyzed the cracked concrete 
bridge, which was subjected to moving loads in the form of vehicles [22]. They studied the 

dynamic behavior of the cracked bridge through breathing and open crack models. (Mahmoud & 
Zaid, 2002) also analyzed a simply supported cracked beam with the help of an iterative analysis 
approach [23]. (Nahvi and Jabbari, 2005) used experimental and FEM approaches to study a 

crack identification problem [24]. (Lin, 2007) developed his analytical approach to explain the 
forced responses observed in a simply supported and cracked beam of a moving vehicle [25]. 

Pala et al. also analyzed a cracked beam's dynamic response underneath the moving load with 
inserted Coriolis and Centripetal forces using Duhamel integral [26]. (Ariaei et al, 2009) 
presented the un-damped EB beams' dynamic response in the presence of breathing cracks when 

moving mass was applied to it with the help of finite element method (FEM) and discrete 
element technique (DET) [3]. (An et al.,2010) analyzed the impact of a crack on simply 

supported un-damped beams, which were bearing moving spring-masses [1]. They proposed this 
technique on the time history, and its spatial wavelet analysis. The time history was practically 
taken from the real vehicles, which moved on the bridge. They used Adomian decomposition 

method (ADM) and its modified form of MADM. This method has been recently used for 
solving differential equations, which were derived to be used in different engineering 

applications. Solving homogeneous and inhomogeneous differential equations and linear and 
nonlinear equations is useful to find constant and variable coefficients. The superiority of this 
method lies on its ability to significantly reduce computations while maintaining the numerical 

solution accuracy.  
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(Bozyigit et al., 2018) studied the impact of foundation damping, modulus of sub-grade 
reaction, and axial compressive load on the beam model's natural frequencies applying several 
boundary conditions in the differential transformation method and the Adomian decomposition 

method, as well as (Mao & Pietrzko, 2012) analyzed the free vibration of the varying section of a 
simply supported beam using ADM [27]. (Mao & Chen, 2013) analyzed the vibration problem of 

beams consisting of arbitrary cracks following the ADM and applying boundary conditions and 
(Mao, 2016) investigated the crack damage detection and free vibrations by applying ADM and 
EB beam theory [28-29]. (Coskun et al., 2011) used ADM, Variational Iteration Method and 

Homotropy Perturbation Procedure to analyze vibration of varying-section EB beams and 
compared the associated mode shapes to their natural frequencies  [30]. However, only in one 

research, (Bilik & Karaçay, 2015) applied MADM to analyze the vibration response of intact 
bridge subjected to a constant load [8]. They applied MADM to vibration analysis of an intact 
bridge subjected to concentrated force. Most of the previous studies in this area have used 

MADM to examine the free vibration of a cracked beam subjected to a moving load, not forced 
vibration. MADM has been applied first time by this presented study to solution of the equation 

of motion of the cracked beam subjected to a moving load. Vibration analysis of a cracked 
simply supported beam subjected to moving load as EB beam has been performed by using 
MADM. Moving load in the equation of motion with a fourth order was expressed by Dirac 

Delta function and the second order was transformed into a second order ordinary differential 
equation considering the non-homogeneous partial differential equation, boundary, and initial 

conditions. 
 

2. ANALYSIS OF CRACKED BEAMS 
In this study, a simply supported and cracked beam that has a length ( ), and its open 

crack was positioned at . A moving force F with a constant velocity is applied on the beam 

from its left end to right end. Uniform beam has a cross-section of width-b and height-h. 
Moreover, at the cross-section a crack depth of –  was formed as seen in Figure (1). 
 

 
 

 
 
 

 
 

 
                                Figure (1): A simply supported cracked beam under moving load. 

In Figure (1), the crack has sub-divided the beam into two parts. Considering the EB beam 
theory, the equation of motion for free vibration of the both parts can be written as follows: 

                                                                                                      

 (1) 

                                                                                                   
 

 (2) 
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where are the vertical displacement before and after the crack, respectively. 

The boundary conditions of a cracked simply supported beam are 
 

                                                                  
 

(3) 

   

the compatibility conditions requirements before and after the crack 
 

   (4) 

 

where the symbols  and indicate the locations promptly prior and next the crack location, 

respectively. The discontinuity position at   is considered on the beam by dividing the 

beam into two parts prior and next the crack. The condition of discontinuity at the crack position 
for a simply beam can be expressed as 

                                                                                    

(5) 

Here c is the local crack flexibility, that can be establish from the following function 

 

(6) 

here is Poisson ratio,h is height of the beam section and is the crack depth ratio 

 
(7) 

and 

 

(8) 

 

The mode shapes of vibration of the two parts of the beam, before and after the crack, 
respectively, are 
 

, s = 1,2,3… 

 

    

(9) 

 

(10) 

 

 
 

  (11) 

Where the coefficients ,  and can be found by substituting previous equations into the 
boundary condition equations. The two spans boundary conditions are: 

 
 

  (12) 

By using the Equation (9) and (12) ,  are obtained as follows. 
 

 
 

  (13) 

and 
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  (14) 

 

 
 

           (15) 

The previous equations can be expressed in a matrix form as following 
 

 

  (16) 

Here  

 

 
 

  (17) 

Using conditions in Equations (4) and (5) with Equations (9) and (10) 

 

 

 

   (18) 

 

 
 

   (19) 

=     (20) 

Where 

 

 

       (21) 

 

(22) 

and       

Substituting Equation (20) into Equation (16) yields 

 

    (23) 

 

 

 

 

Or   (24) 

Where 

 

 

    

(25) 
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The existence of nontrivial solutions requires that the value of the following determinant is 
zero 

 
 

(26) 

The eigenvalues are results of the previous determinant after that the natural frequencies of the 

cracked beam can be obtained analytically by substituting eigenvalues in Equation (11). 
By using Equations (13), (14), (15), (16) and (17), the coefficients can be written as follows. 

 

(27) 

all the values of coefficients depend on the value of  

  (28) 

 

 
 

 (29) 

Where 

 

 (30) 

  

There is only one unknown coefficient  in the Eigen functions equations, Equation (28) and 

Equation (29), can be found it by using orthonormality condition: 

 

  (31) 

can be obtained by using Equations (28), (29) and (31) as 
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  (32) 

 

3. THE PRINCIPLE OF MADM 
MADM has been used in recent years for solving partial differential equations, which are 

highly complex, and widely used in mathematics, physics and engineering applications. Their 
modified and rendered forms give very useful outcomes [31-32] .The second order non-

homogeneous equation, according to this method and its initial conditions, has been expressed as 
follows: 

 
 

  (33) 

Where N(t) is nonlinear function, P(t) and g(t) are given functions, and  and  are constants. 

According to MADM, the new differential operator L is given below: 

 
 

(34) 

If P (t) = 0, Equation 33 can be rewritten as: 

 (35) 

 

In this method, the inverse of the operator L has been applied a two-fold integral operator. 
 

 

(36) 

 

By applying  on Equation (35) becomes as follow: 

 
 

 

 

(37) 

4. THE MATHEMATICAL MODEL OF THE BEAM SUBJECTED TO 
MOVING LOADS 

 
Figure (2): A Simply supported beam under moving loads 
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Fig. 2 shows a simply supported and the moving load. As the force travels from left to right 
direction of the beam ends, it is assumed that the beam vibrates only in w-direction. Neglecting 
the shear force, rotary inertia and damping effects, the equation of motion for the beam under 

load F can be defined as:  
 

 

    (38) 

With boundary and initial conditions: 

 

(39) 

Here:  
EI = flexural rigidity. 
w (x, t) = vertical displacement  

m = Constant mass of beam per unit length  
F = moving load with constant velocity  

 = Dirac delta function 

The series solution can be expressed as given below 

 

 (40) 

Here and  represent eigenfunctions and generalized coordinates of the system, 

respectively, while S represents repetitions needed to achieve a solution  [33]. By substituting 
Equation 40 in Equation 38, and then, integrating it from 0 to l after multiplying by  then 

it yields 

 

(41) 

Recalling the following condition of orthogonality and properties of Dirac delta functions. 

 

(42) 

 

and substituting the Equation (42) into Equation (41) leads to 
 

 

 (43) 

where 

 

(44) 
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For the intact simply supported beam, the assumed mode shape may be written as  

 
   (45) 

The cracked beam 
In this study, a simply supported cracked beam with length l was considered. The crack was 
located at the location as shown in Figure 1. A force F moved along the beam at a 

constant velocity . A movement took place from left to right. The crack divided the beam into 

two segments. For a cracked beam,  represents the mode shapes of the two segments of the 

beam, which is defined by equations 9 and 10. 
Since the nature of eigenfunctions is orthogonal; therefore, it will be expressed as: 

 

 (46) 

By applying the orthogonal relation between the shapes of the mode, Equation 6 will become: 

 

(47) 

 

 

 

where  

 
 

 

5. MADM FOR CRACKED BEAM (WITH MOVING LOAD) 
 

The first segment of the beam can be expressed by the following equation:  

 

(48)  

For solving equation given above using MADM, it is imperative to introduce  operator on 

both sides. The solution will be as follows:  

 

(49)  

Under zero initial conditions, the solution of Equation (38) has the form:  

 

        (50)  

 

In the same manner, for    the solution can be found by applying same MADM procedure 
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For the second segment of beam Equation (47) becomes  

 

(51)  

For solving equation given above using the MADM introducing the  operator on both sides, 

the solution can be written after the operation as  

 
 

(52)  

Considering the MADM,  is assumed to be of the following form  

 

 (53)  

 

and the repetition relation for  

, r=0,1,2,3…         (54)  

 

Using the same procedure as the previous it yields 

 

(55)  

 

It can be easily shown that the coefficients in Equation (55) are in the forms 

     ,    ,    ,           (56)  

 

To determine and  in Equation (55), the initial conditions are used  

 
 

      (57)  

And 

 
 

    (58)  
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where 

 

 

 

 

   (59) 
 

 

k0 can be written as follows from Equation (57) and Equation (58) 
 

 

     (60)  

 

and 

 
 

     (61)  

Subtracting Equation (61) from Equation (60) yields 
 

 
 

      (62)  

Substitution of Equation (62) in Equation (60) yields 

 
 

      (63)  

A very important point here is that the Equation (50) is the answer of Equation (47) before the 
load passes over the crack and when the load passes over the crack then the Equation (55) is the 

answer of Equation (47), respectively. 
 
6. VALIDITY OF THE PRESENT SOLUTION 

Investigations were carried out to test the efficiency and accuracy of MADM solutions. 
They were investigated by comparing the results of the studies in literature. It is possible to 

reduce the present solutions (for a cracked beam) to the corresponding results of an intact beam 
by reducing the crack depth ratio to 0; therefore, we can compare it with intact beams. (Karoumi, 
1998) investigated a simply supported intact beam, which was under a moving load. Indeed, the 

result proposed by [34] can be easily verified if . For further validation of the obtained 

solutions, they were compared to the reference values [35]. Figure 3 shows the first comparison 
of the present results, which was matched with those obtained in Karoumi’s study (1998) [34], in 

which, the system parameters were taken from the same study. We showed the computation by 
the simplified analysis method for mid-span deflection. In addition, the second comparison of 
the present results was matched with those obtained in a study by [35], as shown in Figure 4. 

https://scholar.google.com.tr/citations?user=NAr1PYoAAAAJ&hl=tr&oi=sra
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Moreover, the system parameters were taken from the paper mentioning the computations by the 
Green Function Method for mid-span deflection. Both the comparisons were done using the 
same MATLAB coding of the present method. Excellent agreement between the obtained values 

and the reference values was found. 

 
Figure (3): Comparison of the results of the presented study with Karoumi for cracked simply    

supported beam under moving load when  

 

 
 

Figure (4): Comparison of the results of the presented study with Foda & Abduljabbar for cracked 

simply supported beam under moving load when  
 

7. NUMERICAL EXAMPLES 
In this research, MADM was applied to a simply supported cracked beam, which was subjected 

to a moving load. The material and geometrical parameters of used beam are: Young’s modulus 

E= 210 GPa, Length l= 20 m, width b= 0.2 m, height h =0.2 m, Poisson’s ratio= 0.3, and 

density ρ = 7860 kg/m3. It was observed that the beam had a maximum deflection at the 
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midpoint where the load was applied. That midpoint showed two types of deflection: dynamic 
and static, which is shown in the previous and the following graphs in order to explain the two 

phenomenon. This value is given by where the moving load represents F=9810 N. 

First of all, it is necessary to determine the position of the dynamic deflections and the effect of 
the crack depth. For this purpose, the normalized position of the moving load ( ) and the 

normalized midpoint deflection ( ) were plotted for several crack depth ratios ( ), which 

is shown in Figure 5. In this case, the crack occurred at the midpoint; so, the normal deflections 

of the midpoint increased with increasing crack depth. In Figure 6, the normalized moving load 
position vs. the normalized midpoint deflection have been plotted for different crack locations, 

which are ,  and . When a crack is located at some distance from the midpoint, it 
reduces the normalized midpoint deflection, and the maximum normalized deflection point is 

displaced in the direction of the crack location. Looking closely at Figures 5 and 6, it is obvious 
that the normalized deflection is affected by crack depth ratio instead of the crack position. 

Figure 7 shows the normalized dynamic response at the mid-span of cracked beam for various 

moving load velocities (5,15, 25, 35, and 45 m/s) with . As expected, increasing the 
moving load velocity results in a maximum mid-span deflection, which is dynamic in nature 
because the velocity becomes closer to the critical velocity (28 m/s). At that point, the velocity is 

almost 62% of the critical velocity. After that, the normalized dynamic mid -span maximum 
deflection starts decreasing with its maximum deflection position shifting towards the right side 
until it reaches the end of the beam. Figure 8 shows the moving loads and the dynamic deflection 

response, which was exerted on the cracked simply supported beam at its mid -point with  

. In this case, the constant velocity of the moving load was v=5 m/s. It is obvious that 
when the load was increased from 5 to 45 kN, the normalized beam mid-point deflection 
increased. Table 1 shows the effects of crack depth and its location on the natural frequency of a 

cracked beam under a moving load. It can be seen that when the crack depth was increased from 
0.25 mm to 0.7 mm, the natural frequency of cracked beam under moving load decreased. Also, 

it is obvious that when the crack location shifted away from the mid-point, it reduced the natural 
frequency of cracked beam under a moving load. 

 

Figure (5): The effect of crack depth ratio on the deflection at mid-span of cracked simply 
supported beam subjected to moving load with constant velocity (v =5m/s) by using MADM. 
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Figure (6): The effect of crack location on the deflection at mid-span of cracked simply 

supported beam subjected to moving load with constant velocity (v=5m/s) by using MADM. 
 

 

Figure (7): The effect of the moving load velocity (5,15,25,35,45 m/s) on the deflection at mid -
span of cracked simply supported beam subjected to moving load by using MADM. 
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Figure (8): The effect of the amplitude of moving load on the deflection at mid-span of cracked simply 

supported beam subjected to moving load with constant velocity (v=5m/s) by using MADM. 

 

Table (1) depicts the natural frequencies observed in twelve studied cases. In case when the 
beam is intact, we used Equation (53) to calculate the first four natural frequencies:  = 491.20 

rad/s,  = 1964.8 rad/s,  = 4420.8 rad/s, and  = 7859.3 rad/s. The obtained frequencies are 

mentioned in Table 1. It has been observed that the changes in the natural frequency mainly 
occur because of crack existence, sizes of the cracks and their locations. It is also seen that the 

cracked beams' natural frequencies reduce when the crack depth increases at the same crack 
location. 
 
Table )1(: The effects of crack depth and its location on the natural frequency of cracked beam under 

moving load. 

Case 

number 

Crack 

location 

( ) 

Crack 

depth ratio 

( ) 

Natural frequency (rad/s) Maximum mid-

point deflection 

(cm)     

1 

 

0.3l 

0.25 7.29 29.13 65.85 116.90 5.30 

2 0.40 7.24 28.85 65.79 116.46 5.46 

3 0.55 7.12 28.26 65.65 115.56 5.84 

4 0.70 6.82 26.95 65.35 113.50 6.83 

5 
 

 

0.5l 

0.25 7.30 29.28 65.50 117.13 6.50 

6 0.40 7.20 29.30 64.81 117.13 6.67 

7 0.55 7.03 29.28 63.40 117.13 7.02 

8 0.70 6.60 29.28 60.35 117.13 8.44 

9 
 

 

0.7l 

0.25 7.29 29.28 60.35 117.13 5.37 

10 0.40 7.24 28.85 65.79 116.46 5.50 

11 0.55 7.12 28.26 65.65 115.56 5.78 

12 0.70 6.82 26.95 65.35 113.50 6.60 
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8. CONCLUSIONS 
In this paper, the cracked beams dynamic response under moving load was first time 

analyzed by applying MADM. A crack was modeled by rotational massless spring. This article 

also presents the formulation of the normalized dynamic mid-point deflection of a cracked beam 
subjected to moving load. Applied method was validated when the obtained values were 

compared to the values mentioned in some studies, which were found in literature. It was found 
that the results of MADM have good agreement with the results in literature. The crack depth 
ratio (α) also showed effect on beam deflection. The results show that when the crack depth ratio 

is increased, the cracked beam deflection increases as well. Increasing the moving load velocity 
increases dynamic mid-span maximum deflection. It also increases the maximum mid-point 

deflection, which shifts to the right side of the beam. Increasing the moving load velocity 
increases dynamic mid-span maximum deflection. It also increases the maximum mid-point 
deflection, which shifts to the right end of the beam. Investigation was carried out to understand 

the impact of crack location on a midpoint beam deflection. It is obvious that when the crack 
location shifted away from the mid-point, it reduced deflections. The moving load amplitude 

affected the deflection at the mid-span of simply supported cracked beam. The investigation 
showed that when the amplitude of the moving load was increased, the cracked beam deflection 
increased as a consequence. Also, the effects of crack depth and its location on the natural 

frequency of a cracked beam under a moving load have been investigated. It was shown by this 
study that a strong mathematical method (MADM) can be used for the cracked beams dynamic 

response under moving load. In this study, MADM investigated only for one crack. There is a 
need to study a beam with two or more cracks for a beam under the moving load by using 
MADM. 
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