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ABSTRACT

It is well known that continuous system motion equations are based on partial differential
equations. Their solutions are more difficult than discrete systems’ equations of motions,
especially if the equations of motions are non-linear. Different efforts have been implemented to
solve non-linear partial differential equations for a long time. Researchers have tried to use
different methods for this purpose. Modified Adomian Decomposition Method (MADM) is a
promising method and has been applied to solve non-linear partial differential equations
obtained in engineering systems. In this article, MADM is used to investigate the forced
vibration of the Euler-Bernoulli (EB) cracked beams under a moving load. For this purpose,
MADM was used to create the mentioned vibration response. This model consists of moving load
acting on two continuous segments where the crack is modeled as a rotational spring with
sectional flexibility. For this purpose, the equations of motion with a fourth order have been
used. They are non-homogenous partial differential equations, which were used for
mathematical modeling. Dynamic response was analyzed to understand the cracked supported
beam beneath the moving load, which revealed the impact of concentrated force on crack
location as well as extension. Some numerical results were presented by using MATLAB
software to compute the vibration analysis and plot the deflection. The solution and its
methodology were verified with the help of some studies. Results have shown that MADM s
effective and accurate for vibration analysis of cracked beams under a moving load.
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1. INTRODUCTION

Vibration of bridges under moving loads is a significant topic and a challenge both for
mechanical and structural engineers. Moving load causes substantial deflection and stress when
it is compared to a similar static load. Cracks may occur on a bridge as a result of these kinds of
stresses. Cracks are the major reason behind bridge structure failures. When a crack initiates in a
bridge structure, it loses its stiffness, reducing the lifetime of the bridge structure. It is probable
to predict the crack depth and its location based on the changes in vibration parameters. From the
earliest days of railroad development during the last century, bridge vibration under a moving
load has attracted the attention of numerous researchers [1-13]. (Fryba, 1934) conducted a
comprehensive vibration study of a beam under different kinds of moving loads [14]. (Reis et al.,
2008) analyzed the bridge structures' dynamic responses under moving loads [15]. (Olsson,
1991) studied the EB beam in situations where it was underneath the moving loads by applying
modal analysis using accurate shapes [16]. (Mao, 2012) also studied the uniform cracked EB
beams' free vibrations [17]. (Mofid & Shadnam, 2000) analyzed the dynamic responses of EB
beneath the movable mass using developed discrete elements [18]. (Parhi and Behera,1997)
investigated a damage circular shaft and its dynamic deflection under a moving load applying the
Runge-Kutta procedure [19]. (Bilello & Bergman) [8] studied the damaged EB beam responses
theoretically and experimentally under the moving loads. They modeled the damage using
rotational springs after evaluating their compliance applying mechanics principle of linear elastic
fractures. Their analysis was based on an unknown deflection and its series expansion, also
called as eigenfunction of a beam. (Esmailzadeh & Ghorashi, 1995) investigated the beam
vibration in case of partly distributed uniform moving mass [20]. (Jena & Parhi, 2016) analyzed
a cracked cantilever beam and its response to moving load applying continuum mechanics in
addition to Duhamel integral [21]. Moreover, (Law & Zhu, 2004) analyzed the cracked concrete
bridge, which was subjected to moving loads in the form of vehicles [22]. They studied the
dynamic behavior of the cracked bridge through breathing and open crack models. (Mahmoud &
Zaid, 2002) also analyzed a simply supported cracked beam with the help of an iterative analysis
approach [23]. (Nahvi and Jabbari, 2005) used experimental and FEM approaches to study a
crack identification problem [24]. (Lin, 2007) developed his analytical approach to explain the
forced responses observed in a simply supported and cracked beam of a moving vehicle [25].
Pala et al. also analyzed a cracked beam's dynamic response underneath the moving load with
inserted Coriolis and Centripetal forces using Duhamel integral [26]. (Ariaei et al, 2009)
presented the un-damped EB beams' dynamic response in the presence of breathing cracks when
moving mass was applied to it with the help of finite element method (FEM) and discrete
element technique (DET) [3]. (An et al.,2010) analyzed the impact of a crack on simply
supported un-damped beams, which were bearing moving spring-masses [1]. They proposed this
technique on the time history, and its spatial wavelet analysis. The time history was practically
taken from the real vehicles, which moved on the bridge. They used Adomian decomposition
method (ADM) and its modified form of MADM. This method has been recently used for
solving differential equations, which were derived to be used in different engineering
applications. Solving homogeneous and inhomogeneous differential equations and linear and
nonlinear equations is useful to find constant and variable coefficients. The superiority of this
method lies on its ability to significantly reduce computations while maintaining the numerical
solution accuracy.
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(Bozyigit et al., 2018) studied the impact of foundation damping, modulus of sub-grade
reaction, and axial compressive load on the beam model's natural frequencies applying several
boundary conditions in the differential transformation method and the Adomian decomposition
method, as well as (Mao & Pietrzko, 2012) analyzed the free vibration of the varying section of a
simply supported beam using ADM [27]. (Mao & Chen, 2013) analyzed the vibration problem of
beams consisting of arbitrary cracks following the ADM and applying boundary conditions and
(Mao, 2016) investigated the crack damage detection and free vibrations by applying ADM and
EB beam theory [28-29]. (Coskun et al., 2011) used ADM, Variational Iteration Method and
Homotropy Perturbation Procedure to analyze vibration of varying-section EB beams and
compared the associated mode shapes to their natural frequencies [30]. However, only in one
research, (Bilik & Karagay, 2015) applied MADM to analyze the vibration response of intact
bridge subjected to a constant load [8]. They applied MADM to vibration analysis of an intact
bridge subjected to concentrated force. Most of the previous studies in this area have used
MADM to examine the free vibration of a cracked beam subjected to a moving load, not forced
vibration. MADM has been applied first time by this presented study to solution of the equation
of motion of the cracked beam subjected to a moving load. Vibration analysis of a cracked
simply supported beam subjected to moving load as EB beam has been performed by using
MADM. Moving load in the equation of motion with a fourth order was expressed by Dirac
Delta function and the second order was transformed into a second order ordinary differential
equation considering the non-homogeneous partial differential equation, boundary, and initial
conditions.

2. ANALYSIS OF CRACKED BEAMS

In this study, a simply supported and cracked beam that has a length (1), and its open
crack was positioned at x = [,. A moving force F with a constant velocity is applied on the beam
from its left end to right end. Uniform beam has a cross-section of width-b and height-h.
Moreover, at the cross-section a crack depth of —a was formed as seen in Figure (1).

WA v

_
= l F8(x — vt)
_ | at Eh
— A =

7

Figure (1): A simply supported cracked beam under moving load.
In Figure (1), the crack has sub-divided the beam into two parts. Considering the EB beam
theory, the equation of motion for free vibration of the both parts can be written as follows:

*w, *w,
EI@‘FPA?:O, 0<X<IO (1)
- 34w1 azwl B E :

Fp + pA ET® =0, 0 < x < @)
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where w; and w, are the vertical displacement before and after the crack, respectively.
The boundary conditions of a cracked simply supported beam are

wi(0,8) =wy(LE)=0 ,  w,"(0,8) =w,"(,t) =0

the compatibility conditions requirements before and after the crack

wy (lo-, t) = wy (lo+, ), w1 " (L=, 1) = wy""(Lg+, 1) and wy " (g, t) = wy " (lg+, 1)

®)

Q)

where the symbols [y- and lo+indicate the locations promptly prior and next the crack location,
respectively. The discontinuity position at x = [y is considered on the beam by dividing the

beam into two parts prior and next the crack. The condition of discontinuity at the crack position
for a simply beam can be expressed as

Elc
Wo (ft.0+, t) =w; (f'.o—, t) + ({'—) I0W2”(I0+, t) (5)
0

Here c is the local crack flexibility, that can be establish from the following function

e v2)he ()]

(6)
El
here vis Poisson ratio,h is height of the beam section and ais the crack depth ratio
a
a=7 @)
and
¢(a) = 0.6272a — 1.04533a® +4.5948a* — 9.9736a° + 20.2948a°® — 33.0351a’ .

+47.106a® — 40.7556a° + 19.6a'°

The mode shapes of vibration of the two parts of the beam, before and after the crack,
respectively, are

@1 (x) = ay5 sin(Ax) + by cos(Ax) + ¢; sinh(Ax)+d;.cosh(Ax), x <l s=123...

©)
@2:(x) = ays sinA(x — ly) + bys cosA(x — [y) + ¢y sinhA(x — 1) 10
+ dy.coshA(x — 1), lp<x<l,s= 123, .. (10)
A 2
5 _ pAw;
El 1)

Where the coefficients a;,b;., c;. and d;.can be found by substituting previous equations into the
boundary condition equations. The two spans boundary conditions are:
P ':(0) = 0: P .':”(0) = 0: (p'?':(f) =0 and(p?s”(I) =0 (12)

By using the Equation (9) and (12) b, d+ are obtained as follows.

bls = dls =0 (13)

and
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ays Sin A(l — 1y) + bys cosA(l — 1) + ¢y sinhA(l — 1) + dyscoshA(l — 1) = 0

(14)
—ay, Sin AL — ly) — byg cosA(l — 1y) + ¢y sinhA(l — 1) + dyscoshA(l— 1) =0 (15)
The previous equations can be expressed in a matrix form as following
Aos
1712113114 bys _ [0
1722 ?‘23?‘24] Cos | [0] (16)
dZS
Here

r; = sinA(l — 1), ry = cos A(l —1y), 113 = sinhA(l — ly) , 14 = coshA(l — 1)
Ty = —SinA(l — ly), 1py = — cosA(l — 1), 1,3 = sinhA(l — 1) and 1,4, = coshA(l—-1,) (17)

Using conditions in Equations (4) and (5) with Equations (9) and (10)

a,s sin(Aly) + by cos(Aly) + ¢1c sinh(Aly) + dyccosh(Aly) = dyg + bys

a,s Sin(Aly) — by cos(Aly) + cgq sinh(Aly) + dy;cosh(Aly) = dys — by (18)
—ays cos(Aly) + bys sin(Aly) + ¢;c cosh(Aly) + dycsinh(Aly) = ¢y — ays

a5 cos(Aly) — byg sin(Aly) + ¢ cosh(Aly) + dygsinh(Aly) = cy5 + apsr EIcA(bys — dys)  (19)

S11 S12 S13 S14| [Qus] [Qas
Spg1 Sz2  Sz3 Saa||bis| |bas

S31 Ssz S3z Szal|Cis|7| Cas (20)
Sg1 Saz  Saz Sgql ldis| ldas
Where
S11 = cos Aly — 8sindly , 515 = —sinAly — dcosAly ,s;3 = 0sinhAly ,s4 = cosh Al, 1)
Sy = Sindly ,S,, = cosAly ,s;3 =0,n14, =0
S3; = —dsinAly ,s3, = —8cosAly ,s,3 = cosh Aly + 6sinhAly, 514 22)
= sinh Aly + 6coshil,
and &= M:C
Substituting Equation (20) into Equation (16) yields
S11 512 S13 S14][Q1s (23)
[0] . [r11r12r13 r14] Sp1 S22 S23  Saa||bus
0]  lraiToaTaaragl|S31 Sz S3z S3g||Cis
Ss41  Saz2  Saz  Saalldis
zls (blls
Or [g] = Rjxa X S4xa Ci: =TXx Ci: 24)
dls dls
Where
t11 = 111511 + 112521 + 713531 + 1MaSay
t12 = N1S12 T 112522 + 713532 + 114Sar (25)
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t13 = 111513 + 112523 + 113533 + 114543
t14 = 111514 T N2S24 + 713534 + 114544
t21 = 121511 + 122521 T 123531 + 124541
too = 131512 T 122522 T 123832 + 124542
t23 = 121513 t 122523 + 723533 + 124543
toa = T31514 T 122524 T 123534 + 124544

The existence of nontrivial solutions requires that the value of the following determinant is
zero
|?‘11?‘13| _

721723 (26)

The eigenvalues are results of the previous determinant after that the natural frequencies of the
cracked beam can be obtained analytically by substituting eigenvalues in Equation (11).
By using Equations (13), (14), (15), (16) and (17), the coefficients can be written as follows.

als(ﬁ sin(Aly) smh(&(f — IO)))
sr'.nh()l(l — 1y))(cosh(4lp) + 8sinh (Aly)) + cosh (A(I — y))sinh (A1)
ays = ars(cos(Aly) — & sin(Aly)) + cosh(A(l — 1)) sinh(A,)

3 @7)
b,s = a;.sin(Aly)
C2s = c15(cosh(Aly) + 8sinh(Aly)) — as.8sin(Aly)
\ dys = ¢issinh(Aly)
all the values of coefficients depend on the value of a;;
015 (x) = a;(sin(Ax) + z sinh(Ax)), 0 <x<l (28)
P (x) = ay ((cos(ﬂo) — & sin(Aly)) + z6sinh(Aly) sinA(x — 1)
+ sin(Aly) cosA(x — Ip) + z(cosh(ﬂo) + é‘sinh(ﬂo)) 29)
— 8sin(Aly) sinhA(x — ) + z sinh(Aly) coshA(x — IO)), lp<x<l
Where
(8sin (Aly)sinh (A(1 — 1))
(30)

N sinh(A(1 — 1y))(cosh(Aly) + Ssinh (Aly)) + cosh(A(l — ly))sinh (A1)

There is only one unknown coefficient a; in the Eigen functions equations, Equation (28) and

Equation (29), can be found it by using orthonormality condition:
1/2

1 1 1
ool = | fo qoz(x)dxz(fo o2 (0dx + Ilwgs(x)dx) —1 @)

a;s can be obtained by using Equations (28), (29) and (31) as
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1
—\ 1
Iy #f()dx + flo @2 (x)dx

a5 1/2 (32)

3. THE PRINCIPLE OF MADM

MADM has been used in recent years for solving partial differential equations, which are
highly complex, and widely used in mathematics, physics and engineering applications. Their
modified and rendered forms give very useful outcomes [31-32] .The second order non-
homogeneous equation, according to this method and its initial conditions, has been expressed as
follows:
w’(t)+ P(t)w'+ N(t) = g(t), w(0) = kyand w'(0) =k, (33)
Where N(t) is nonlinear function, P(t) and g(t) are given functions, and k, and k; are constants.
According to MADM, the new differential operator L is given below:

d d
— ,—[P)dt [ ,[P(t)de _°
L=e dt (e dt) (34)
If P (t) = 0, Equation 33 can be rewritten as:
Lw=g(t)— N(t) (35)
In this method, the inverse of the operator L has been applied a two-fold integral operator.
t t
L—l(,) — J.e—fP(t)dt J. efP[t)dt ()dtdt (36)
0 0
By applying L~ 'on Equation (35) becomes as follow:
w(t) =ko+ kit + L7 1g(t) — L7IN(t)
@37)

4. THE MATHEMATICAL MODEL OF THE BEAM SUBJECTED TO
MOVING LOADS

Fd(x — vt)
v
e
x=vt |

-

X
— {

=

Figure (2): A Simply supported beam under moving loads
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Fig. 2 shows a simply supported and the moving load. As the force travels from left to right
direction of the beam ends, it is assumed that the beam vibrates only in w-direction. Neglecting
the shear force, rotary inertia and damping effects, the equation of motion for the beam under
load F can be defined as:

*w(x, t) ?w(x,t)

i i _ 38
El EpT + pA 32 Fé6(x —vt) 0<x<l (38)
With boundary and initial conditions:

a?w(0,t ?w(l,t
w0,0=0""00 _o Laon=022YD_o Lo =o,
dx?2 dx?2 (39)
ow(x,0) 0
at
Here:

El = flexural rigidity.

w (X, t) = vertical displacement

m = Constant mass of beam per unit length

F = moving load with constant velocity v

6 = Dirac delta function

The series solution can be expressed as given below

wix, ) = Z PREVRG @)

Here qas(x) and n.(t) represent eigenfunctions and generalized coordinates of the system,

respectively, while S represents repetitions needed to achieve a solution [33]. By substituting
Equation 40 in Equation 38, and then, integrating it from 0 to | after multiplying by ¢,,(x) then

it yields

I
d?n.(t
Z[ ;"tz( )+ws ns(t)U Ps () @y, (x) dx = fp—a(x — V) @y, (X)dx (41)
s=1 0
Recallmg the following condltlon of orthogonality and properties of Dirac delta functions.
0, S+m
f 95 () Py (x)dx = {_ _and f 8(z—10) f(x) = f(zo) “2)
0 2’

and substituting the Equation (42) into Equation (41) leads to

d’n.(t) 2F
qrz O ns(t)— oA cps(vt) (43)
where
nwx\2 |EI
wg = (T) ﬁ (44)
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For the intact simply supported beam, the assumed mode shape may be written as
nmx

ps(x) = sin (T) (45)
The cracked beam

In this study, a simply supported cracked beam with length | was considered. The crack was
located at the location x = [y as shown in Figure 1. A force F moved along the beam at a
constant velocity v. A movement took place from left to right. The crack divided the beam into
two segments. For a cracked beam, ¢, (x) represents the mode shapes of the two segments of the
beam, which is defined by equations 9 and 10.

Since the nature of eigenfunctions is orthogonal; therefore, it will be expressed as:

1 l Iy 1
J. (pmzdx = J. (Psz dx = J. (Plsz dx + J. (PZSZ dx (46)
0 0 0 1,
By applying the orthogonal relation between the shapes of the mode, Equation 6 will become:
d’n,(t)
“diz + wns(t)
l
E,|as sin(et) + by cos(et) + ¢, sinh(et) + d.cosh(et)], t = _I—f (47)

E,[a,s sin(et — 0) + byg cos(et — 0) + ¢y sinh(et — B) + d,.cosh(et — 0)], t > —

where

F
£ v oand F, Y

5. MADM FOR CRACKED BEAM (WITH MOVING LOAD)

The first segment of the beam can be expressed by the following equation:

d?n,(t F
L() + w?n(t) = — [ay, sin(Ax) + by, cos(Ax) + ¢; sinh(Ax) + dy cosh(Ax)],
dt? pA 48)
t = I—O
v
For solving equation given above using MADM, it is imperative to introduce L™* operator on

both sides. The solution will be as follows:

Z n(t) = ko + kit — L wn(t) — F,[ay sin(et) + by cos(et) + ¢, sinh(et)

(49)
s=0
+ d, cosh(et)]
Under zero initial conditions, the solution of Equation (38) has the form:
T e ) ] cis F, [ e ) ]
N(t) = "l sin(w.t) — sin(et) Ztollo sin(wst) — sinh(et) (50)

In the same manner, for t > %" the solution can be found by applying same MADM procedure
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For the second segment of beam Equation (47) becomes
dzns(t) 2
dtz + wS ns(t)
= F,[a,, sin(st — 0) + by, cos(st — B) + ¢, sinh(st — 0) (51)

[
+ dyccosh(et —0)], t > '1_2

For solving equation given above using the MADM introducing the L~ operator on both sides,
the solution can be written after the operation as

Z n,(t) = ko + kit — L w21 (t) — E,[ayssin(et — 0) + by, cos(et — 0)
=0

(52)
+ ¢y¢ sinh(et — 8) + d,ccosh(et — 0)]
Considering the MADM, 1, (t) is assumed to be of the following form
No(t) = ko + kit + L E,[a,, sin(et — 0) + b, cos(et — 0) + ¢, sinh(et — 0)
+ d,scosh(et —0)] (53)
and the repetition relation for 1,1 (t)
Nre1 () = =L s, (D], =0,12,3... (54)
Using the same procedure as the previous it yields
£
N.s(t) = ays [w_ cos6O sin(w,t) — sinfcos(w,t) +sin(f — et)]
5
_ e
+ by [w_ sin @ sin(w,t) + cos@ cos (wst) — cos (8 — et)]
5
£
— Gy L}— cosh 0 sin(w.t) —sinh 6 cos(w,t) + sinh(8 — et)] (55)
5
- [
+ d, [w_ sinh 8 sin(wst) — cosh @ cos(w,t) + cosh(6 — et)] + kycos(wgt)
5
k
+— sin(wgt)
s
It can be easily shown that the coefficients in Equation (55) are in the forms
— _ Gy F E bys Fz ~  _ CxFp & _ dasFz
a’ZS - Ez_wsz 25'82—6‘)52 , CZS - £2+&)32 ’ 25 — £2+w52 (56)
To determine ko and k; in Equation (55), the initial conditions are used
ly ly lo wsly ky  (wsly
s (;) s (;) —f (;) +kocos ( v ) * w—ssm( v ) (57)
And
. (lo . lo o lo _ (wslo wgly
s (;) ~ Mn2s (;) —H (;) ~ koo sm( v ) * klcos( v ) (58)
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where
H(t) = a,, L)i cos8 sin(wgt) — sinfcos(wt) +sin(8 — et)] + b, L)i sin 6 sin(wst) +

e 59
cos 8 cos (wgt) — cos (6 — st)] — Coe L}— cosh @ sin(wst) —sinh 6 cos(wst) + sinh(6 — 9)
st)] + dos [wi sinh 6 sin(wst) — cosh @ cos(wt) + cosh(8 — st)]
ko can be written as follows from Equation (57) and Equation (58)
I L ki . (sl
ms (3) —H(3) -2 (%)
ko = w1 5 (60)
cos (%57)
and
IO ID 50
() () +acos(57)
0 (1]
W, Sin (%I“) (61)

Subtracting Equation (61) from Equation (60) yields

b= e () G )osin (%) [ () - G eos(5°) =

Substitution of Equation (62) in Equation (60) yields
. wslp
. Wy f'.o f'.o f'.o . f'.o . f'.o sin (T)
ko = cos (52) (’hs ()-# (—)) - (’hs ()-# (—))—w ©)

A very important point here is that the Equation (50) is the answer of Equation (47) before the
load passes over the crack and when the load passes over the crack then the Equation (55) is the
answer of Equation (47), respectively.

6. VALIDITY OF THE PRESENT SOLUTION

Investigations were carried out to test the efficiency and accuracy of MADM solutions.
They were investigated by comparing the results of the studies in literature. It is possible to
reduce the present solutions (for a cracked beam) to the corresponding results of an intact beam
by reducing the crack depth ratio to O; therefore, we can compare it with intact beams. (Karoumi,
1998) investigated a simply supported intact beam, which was under a moving load. Indeed, the
result proposed by [34] can be easily verified if @ = 0. For further validation of the obtained
solutions, they were compared to the reference values [35]. Figure 3 shows the first comparison
of the present results, which was matched with those obtained in Karoumi’s study (1998) [34], in
which, the system parameters were taken from the same study. We showed the computation by
the simplified analysis method for mid-span deflection. In addition, the second comparison of
the present results was matched with those obtained in a study by [35], as shown in Figure 4.
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Moreover, the system parameters were taken from the paper mentioning the computations by the
Green Function Method for mid-span deflection. Both the comparisons were done using the
same MATLAB coding of the present method. Excellent agreement between the obtained values
and the reference values was found.
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Figure (3): Comparison of the results of the presented study with Karoumi for cracked simply
supported beam under moving load whena = 0
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Figure (4): Comparison of the results of the presented study with Foda & Abduljabbar for cracked
simply supported beam under moving load when & = 0

7. NUMERICAL EXAMPLES

In this research, MADM was applied to a simply supported cracked beam, which was subjected
to a moving load. The material and geometrical parameters of used beam are: Young’s modulus
E= 210 GPa, Length I= 20 m, width b= 0.2 m, height h =0.2 m, Poisson’s ratiov= 0.3, and
density p = 7860 kg/m3. It was observed that the beam had a maximum deflection at the
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midpoint where the load was applied. That midpoint showed two types of deflection: dynamic
and static, which is shown in the previous and the following graphs in order to explain the two

phenomenon. This value is given by wy, ., = fg—iwhere the moving load represents F=9810 N.

First of all, it is necessary to determine the position of the dynamic deflections and the effect of
the crack depth. For this purpose, the normalized position of the moving load (vt/l) and the
normalized midpoint deflection (w/w,,,,) were plotted for several crack depth ratios («), which
is shown in Figure 5. In this case, the crack occurred at the midpoint; so, the normal deflections
of the midpoint increased with increasing crack depth. In Figure 6, the normalized moving load
position vs. the normalized midpoint deflection have been plotted for different crack locations,
which are 0.31, 0.51 and0.71. When a crack is located at some distance from the midpoint, it
reduces the normalized midpoint deflection, and the maximum normalized deflection point is
displaced in the direction of the crack location. Looking closely at Figures 5 and 6, it is obvious
that the normalized deflection is affected by crack depth ratio instead of the crack position.
Figure 7 shows the normalized dynamic response at the mid-span of cracked beam for various
moving load velocities (5,15, 25, 35, and 45 m/s) with a = 0.5. As expected, increasing the
moving load velocity results in a maximum mid-span deflection, which is dynamic in nature
because the velocity becomes closer to the critical velocity (28 m/s). At that point, the velocity is
almost 62% of the critical velocity. After that, the normalized dynamic mid-span maximum
deflection starts decreasing with its maximum deflection position shifting towards the right side
until it reaches the end of the beam. Figure 8 shows the moving loads and the dynamic deflection
response, which was exerted on the cracked simply supported beam at its mid-point with
a = 0.5. In this case, the constant velocity of the moving load was v=5 m/s. It is obvious that
when the load was increased from 5 to 45 kN, the normalized beam mid-point deflection
increased. Table 1 shows the effects of crack depth and its location on the natural frequency of a
cracked beam under a moving load. It can be seen that when the crack depth was increased from
0.25 mm to 0.7 mm, the natural frequency of cracked beam under moving load decreased. Also,
it is obvious that when the crack location shifted away from the mid-point, it reduced the natural

frequency of cracked beam under a moving load.
0.2 T T T T T

0 — Intact beam(cx = 0)

— — cracked beam(c = (.25)
) —-—- cracked beam(nx = 0.50)
04} N cracked beam(a =0.75)

max )

'

=

35
T

Normalized midpoint deflection( 2/

0 011 0i2 0t3 0j4 015 0?6 0?7 0?8 059 1
Normalized position of the moving load ( v/ )
Figure (5): The effect of crack depth ratio on the deflection at mid-span of cracked simply
supported beam subjected to moving load with constant velocity (v =5m/s) by using MADM.
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Figure (6): The effect of crack location on the deflection at mid-span of cracked simply
supported beam subjected to moving load with constant velocity (v=5m/s) by using MADM.
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Figure (7): The effect of the moving load velocity (5,15,25,35,45 m/s) on the deflection at mid -
span of cracked simply supported beam subjected to moving load by using MADM.
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Figure (8): The effect of the amplitude of moving load on the deflection at mid-span of cracked simply
supported beam subjected to moving load with constant velocity (v=5m/s) by using MADM.

Table (1) depicts the natural frequencies observed in twelve studied cases. In case when the
beam is intact, we used Equation (53) to calculate the first four natural frequencies: w,; =491.20
rad/s, w, = 1964.8 rad/s, ws = 4420.8 rad/s, and w, = 7859.3 rad/s. The obtained frequencies are
mentioned in Table 1. It has been observed that the changes in the natural frequency mainly
occur because of crack existence, sizes of the cracks and their locations. It is also seen that the
cracked beams' natural frequencies reduce when the crack depth increases at the same crack
location.

Table (1): The effects of crack depth and its location on the natural frequency of cracked beam under

moving load.

Crack Crack Natural frequency (rad/s) Maximum mid-

Case location depth ratio point deflection
number | ) (@) @1 @2 @3 @4 (cm)
1 0.25 7.29 29.13 65.85 116.90 5.30
2 0.40 7.24 28.85 65.79 116.46 5.46
3 0.3l 0.55 7.12 28.26 65.65 115.56 5.84
4 0.70 6.82 26.95 65.35 113.50 6.83
5 0.25 7.30 29.28 65.50 117.13 6.50
6 0.40 7.20 29.30 64.81 117.13 6.67
7 05l 0.55 7.03 29.28 63.40 117.13 7.02
8 0.70 6.60 29.28 60.35 117.13 8.44
9 0.25 7.29 29.28 60.35 117.13 5.37
10 0.40 7.24 28.85 65.79 116.46 5.50
11 0.7l 0.55 7.12 28.26 65.65 115.56 5.78
12 0.70 6.82 26.95 65.35 113.50 6.60
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8. CONCLUSIONS

In this paper, the cracked beams dynamic response under moving load was first time
analyzed by applying MADM. A crack was modeled by rotational massless spring. This article
also presents the formulation of the normalized dynamic mid-point deflection of a cracked beam
subjected to moving load. Applied method was validated when the obtained values were
compared to the values mentioned in some studies, which were found in literature. It was found
that the results of MADM have good agreement with the results in literature. The crack depth
ratio (o) also showed effect on beam deflection. The results show that when the crack depth ratio
is increased, the cracked beam deflection increases as well. Increasing the moving load velocity
increases dynamic mid-span maximum deflection. It also increases the maximum mid-point
deflection, which shifts to the right side of the beam. Increasing the moving load velocity
increases dynamic mid-span maximum deflection. It also increases the maximum mid-point
deflection, which shifts to the right end of the beam. Investigation was carried out to understand
the impact of crack location on a midpoint beam deflection. It is obvious that when the crack
location shifted away from the mid-point, it reduced deflections. The moving load amplitude
affected the deflection at the mid-span of simply supported cracked beam. The investigation
showed that when the amplitude of the moving load was increased, the cracked beam deflection
increased as a consequence. Also, the effects of crack depth and its location on the natural
frequency of a cracked beam under a moving load have been investigated. It was shown by this
study that a strong mathematical method (MADM) can be used for the cracked beams dynamic
response under moving load. In this study, MADM investigated only for one crack. There is a
need to study a beam with two or more cracks for a beam under the moving load by using
MADM.

REFERENCES

1. An, N, Xia, H., & Zhan, J. (2010). Identification of beam crack using the dynamic response of a
moving spring-mass unit. Interaction and Multiscale Mechanics, 3(4), 321-331.

2. (Ramadan, Tur et al. 2017, Ramadan, Tur et al. 2017, Ramadan and ALFARES 2020, Ramadan and
Boghdadi 2020, Ramadan and ali Osman 2021, Ramadan, Khalifa etal. 2021, Abubaker, Ramadan et
al. 2023, Ramadan, Embaia et al. 2023)

3. Ariaei, A, Ziaei-Rad, S., & Ghayour, M. (2009). Vibration analysis of beams with open and
breathing cracks subjected to moving masses. Journal of Sound and Vibration., 326(3), 709.

4. Abubaker, S. S., N. R. Ramadan, S. A. Sultan and M. R. Budar (2023). "Investigation Of The Effect
Of Temperature And Time Of Case Hardening On The Mechanical Properties And Microstructure Of
Low Carbon Steel (Aisi 1020)." Surman Journal of Science and Technology 5(2): 028-036.

5. Ramadan, N. and H. ALFARES (2020). "Optimize and Improve of The Welding Nugget in The
Resistance Welding Process of Carbon Steel by Means of Surface Response Method." Surman
Journal of Science and Technology 2(3): 018-007.

6. Ramadan, N. and K. ali Osman (2021). "Isothermal Transformation Temperatures and Its Effect in
Hardiness of Pearlite Eutectic Steels R350HT Rails.” Surman Joumal of Science and Technology
3(1): 028-036.

7. Bilello, C., & Bergman, L. A. (2004). Vibration of damaged beams under a moving mass: Theory and
experimental validation. Journal of Sound and Vibration, 274(3-5), 567-582.

8. Bilik, F., & Karagay, T. (2015). Kuvvet Uygulanmis Basit Mesnetli Euler-Bemoulli Kiriginin Madm
Kullanilarak Titresim Analizi.

Vol 6, N0.2, Jun - Dec. 2024 | OPEN ACCESS - Creative Commons CC RN

118



_ 483 g 2 glall (e o Ao
B Surman Journal for Science and Technology

| Vol 6, No.2, Jun - Dec. 2024
. ISSN: Online (2790-5721) - Print (2790-5713
sjst.scst.edu.ly ( ) ( ) Pages: 103 ~ 120

9. Ramadan, N. and A. Boghdadi (2020). "Parametric optimization of TIG welding influence on tensile
strength of dissimilar metals SS-304 and low carbon steel by using Taguchi approach.” Am. J. Eng.
Res 9(9): 7-14.

10. Ramadan, N., M. M. Embaia and H. M. Elhamrouni (2023). "Laser Beam Welding Effect On The
Microhardness Of Welding Area Of 304 Stainless Steel & Low Carbon Steel.” Surman Joumal of
Science and Technology 5(1): 018-030.

11. Ramadan, N., S. G. Khalifa and H. A. Moftah (2021). "The Influence of the Quality of Libyan Banks’
Services on Achieving Customer Satisfaction.” Surman Joumal of Science and Technology 3(1): 037 -
046.

12. Ramadan, N., K. Tur and E. Konca (2017). "Design and Simulation of an Apparatus for the Post-
Weld Controlled Accelerated Cooling of R350HT Head Hardened Rail Joints."

13. Ramadan, N., K. Tur and E. Konca (2017). "Process design optimization for welding of the head
hardened R350 Ht rails and their fatigue: a literature review." Intemational Joumal of Engineering
Research and Development: 2278-2800.

14. Fryba, L. (n.d.). Vibration of solids and structures under moving loads. 1999. Noordhoff, Groningen.

15. Reis, M., Pala, Y., & Karadere, G. (2008). Dynamic analysis of a bridge supported with many
vertical supports under moving load. The Baltic Joumnal of Road and Bridge Engineering, 3(1), 14—
20.

16. Olsson, M. (1991). On the fundamental moving load problem. Joumal of Sound and Vibration,
145(2), 299-307.

17. Mao, Qibo, & Pietrzko, S. (2012). Free vibration analysis of a type of tapered beams by using
Adomian decomposition method. Applied Mathematics and Computation, 219(6), 3264-3271.

18. Mofid, M., & Shadnam, M. (2000). On the response of beams with intemal hinges, under moving
mass. Advances in Engineering Software, 31(5), 323-328.

19. Parhi, D. R., & Behera, A. K. (1997). Dynamic deflection of a cracked shaft subjected to moving
mass. Transactions of the Canadian Society for Mechanical Engineering, 21(3), 295-316.

20. Esmailzadeh, E., & Ghorashi, M. (1995). Vibration analysis of beams traversed by uniform partially
distributed moving masses. Journal of Sound and Vibration, 184(1), 9-17.

21. Jena, S. P., & Parhi, D. R. (2016). Response of damaged structure to high speed mass. Procedia
Engineering, 144, 1435-1442.

22. Law, S. S.,, & Zhu, X. Q. (2004). Dynamic behavior of damaged concrete bridge structures under
moving vehicular loads. Engineering Structures, 26(9), 1279-1293.

23. Mahmoud, M. A., & Abou Zaid, M. A. (2002). Dynamic response of a beam with a crack subject to a
moving mass. Journal of Sound and Vibration, 256(4), 591-603.

24. Nahvi, H., & Jabbari, M. (2005). Crack detection in beams using experimental modal data and finite
element model. International Journal of Mechanical Sciences, 47(10), 1477-1497.

25. Lin, H.-P. (2007). Vibration analysis of a cracked beam subjected to a traveling vehicle. Proceedings
of the 14" International Congress on Sound and Vibration, Cairns, Australia, 9-12.

26. Pala, Y., & Reis, M. (2013). Dynamic response of a cracked beam under a moving mass load. Journal
of Engineering Mechanics, 139(9), 1229-1238.

27. Mao Q. (2016). Vibration analysis of cracked beams using Adomian decomposition method and non-
baseline damage detection via high-pass filters. Int. J. Acoust. Vibr. International Joumal of
Acoustics and Vibrations, 21(2), 170-177.

28. Mao, Q, & Chen, X. (2013). Application of adomian decomposition method to free vibration analysis
of multi-cracked beams. 20th Intemational Congress on Sound and Vibration 2013, ICSV 2013, 2,
1017-1024.

29. Mao, Qibo. (2012). Free Vibration Analysis of Uniform Beams with Arbitrary Number of Cracks by
using Adomian Decomposition Method. World Applied Sciences Journal, 1(19), 1721-1723.

Vol 6, N0.2, Jun - Dec. 2024 | OPEN ACCESS - Creative Commons CC RN

119



_ 483 g 2 glall (e o Ao
B Surman Journal for Science and Technology

| Vol 6, No.2, Jun - Dec. 2024
. ISSN: Online (2790-5721) - Print (2790-5713
sjst.scst.edu.ly ( ) ( ) Pages: 103 ~ 120

30. Coskun, S. B., Atay, M. T. & Oztiirk, B. (2011). Transverse vibration analysis of Euler Bemoulli
Beams using analytical approximate techniques, Advances in Vibration Analysis Research, Dr.
Farzad Ebrahimi  (Ed.), ISBN:  978-953-307-209-8, InTech,  Available  from:
http://Aww.intechopen.com/books/advances-in-vibration-analysis-research/transverse-vibration-
analysis-ofeuler-bernoulli-beams-using-analytical-approximate-techniques

31. Hosseini, M. M., & Nasabzadeh, H. (2006). On the convergence of Adomian decomposition method.
Applied Mathematics and Computation, 182(1), 536-543.

32. Hosseini, M. M., & Nasabzadeh, H. (2007). Modified Adomian decomposition method for specific
second order ordinary differential equations. Applied Mathematics and Computation, 186(1), 117—
123.

33. Ding, H., Chen, L.-Q., & Yang, S.-P. (2012). Convergence of Galerkin truncation for dynamic
response of finite beams on nonlinear foundations under a moving load. Joumal of Sound and
Vibration, 331(10), 2426-2442.

34. Karoumi, R. (1998). Response of cable-stayed and suspension bridges to moving vehicles: Analysis
methods and practical modeling techniques [PhD Thesis]. KTH Royal Institute of Technology.

35. Foda, M. A., & Abduljabbar, Z. (1998). A dynamic Green function formulation for the response of a
beam structure to a moving mass. Journal of Sound and Vibration, 210(3), 295-306.

36. Hakan Gokdag. (2013). A Crack Identification Method for Bridge Type Structures under Vehicular
Load Using Wavelet Transform and Particle Swarm Optimization. Advances in Acoustics and
Vibration, 2013.

Vol 6, N0.2, Jun - Dec. 2024 | OPEN ACCESS - Creative Commons CC RN

120



