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Abstract 
Feedback linearization is a powerful technique used in control systems to transform the 

dynamics of nonlinear systems into a linear form, making them easier to analyze and control. 
However, dealing with highly nonlinear systems can be challenging and complicated. This 

paper aims to address this issue by proposing an improved approach to the feedback 
linearization method. To enhance the feedback linearization control of single-input single 
output (SISO) nonlinear systems, the paper explores two main strategies. The first approach 

involves adjusting the control gains in conjunction with other parameters to optimize the 
control performance. This allows for fine-tuning the system’s behavior and response to achieve 

desired objectives. The second approach focuses on evaluating the performance of the feedback 
linearization control through simulations under diverse scenarios, disturbances, and reference 
inputs. By conducting these simulations, the researchers can thoroughly analyze how the system 

behaves and performs under various conditions. Importantly, throughout these adjustments and 
simulations, ensuring system stability remains a crucial consideration. The paper delves into 

two specific techniques for designing feedback linearization control: input-output linearization 
and input-state linearization. Both techniques offer distinct advantages and trade-offs 
depending on the system requirements and characteristics. By employing these techniques, the 

designer aims to achieve the desired behavior and performance of the SISO nonlinear system. 

 

 خلاصة البحث
الحديث؛ لتحويل ديناميكية الانظمة الغير خطية  تعتبر التقنية الخطية الراجعة؛ من أفضل التقنيات المستخدمة في أنظمة التحكم 

بينما من السهل التعامل مع الأنظمة   بسبب أن التعامل مع الانظمة الغير خطية يكون صعبا ومعقد للغاية،  الى أنظمة خطية. وذلك 
ونركز في هذه الورقة على دراسة هذه المشكلة ومعالجتها من خلال إتباع نهج ’محسن لطريقة   الخطية وتحليل بياناتها والتحكم بها. 

التقنية الخطية الراجعة، التي من شأنها أن تعزز التحكم الخطي الأنظمة الغير خطية ذات المدخلات والمخرجات الفردية. وتهدف هذه 
يقترح  الورقة لتحسين سلوك الأنظمة الغير خطية وزيادة استجابتها لأوامر التحكم وذلك بأتباع نهجين مختلفين هما على النحو الت الي: 

النهج الاول تعديل تغدية هذه الأنظمة بالتزامن مع بعض المعلمات الاخرى، في حين ’يركز النهج الثاني على تحسين سلوك النظام من 
خلال عمليات المحاكاة في ظل سيناريوهات ومدخلات مرجعية متنوعة. ومن خلال أجراء عمليات هذه المحاكاة، يمكن للباحثين أجراء  

وأدائه في ظل ظروف مختلفة. في حين يظل استقرار النظام أحد الاعتبارات الحاسمة مهما كانت  تحليل شا مل لكيفية تعامل النظام 
طريقة التعديل المقترحة. وثم التركيز في هذه الورقة على استخدام طريقتين مختلفتين وهما طريقة التصميم الخطي الراجع باستخدام  

لتصميم الخطي الراجع باستخدام المدخلات وحالة النظام المستخدمة. وحققت كلتا الطريقتين نجاحات  المدخلات والمخرجات، وطريقة ا
 ملموسة ساهمت بشكل جيد في تحسين أداء الانظمة اللاخطية التي أجريت عليها الدراسة في هذه البحث.

 
Keywords: Feedback Linearization Control, Tracking Control, Nonlinear SISO Systems, System 
Stability, System Disturbances, System Optimization. 

1. Introduction 

In the feedback linearization method, the focus is to stabilize and control nonlinear systems 
through the transformation of their dynamics into a linear form. According to [1], this method 

gives us the opportunity to use linear control techniques on nonlinear systems. This approach 
aims to eliminate the nonlinearity in the system dynamics by finding a suitable change of 

variables [1] and [2]. 
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According to [3], in continuous - time state space models, the nonlinear system can be 
represented in the following form,  

ẋ = f(x)+ g(x)u,        

y = h(x).                          
}− −− −− −− −− −− −− − −− −− − (1) 

where: x is an n-dimensional state variables vector; u is an m-dimensional control vector of 

manipulated input variables; y is an m-dimensional output variable vector; f(x) is an n-

dimensional vector of nonlinear function; g(x) is an (n × m)-dimensional matrix of nonlinear 

functions; and h(x) is an m-dimensional vector of nonlinear functions. For SISO case m =  1. 

The advantage of the feedback linearization method is its ability to produce a linear model that 
accurately represents the original nonlinear model over a wide range of operating conditions. 
The process is divided into two operation steps. In the first step, the system’s nonlinear 

coordinates are modified; and in the second step, nonlinear state feedback is implemented [4] 
and [5]. This work focuses on local feedback linearization, which means that the coordinate 

transformation and control law can only be defined locally. This is because we need to eliminate 
complications associated with the global problem [6]. The feedback linearization method is 
generally based on two main approaches: input-output linearization and input-state 

linearization. The input-output approach is intended to define a linear path between transformed 
inputs (v) and actual outputs (y). The next step is designing a linear controller for the linearized 

input-output model. However, in most cases of this method, there is a subsystem that cannot be 
linearized [7]. While in the second approach which is input state linearization, the purpose is to 

linearize the map between the transformed inputs and the entire vector of transformed state 
variables [1]-[3]. This goal can be obtained by creating artificial outputs (w) that generate a 

feedback linear model with state dimension r =  n. The design controller formed with this 
approach is complex because the map between transformed inputs and original outputs (y) is 

generally nonlinear. As a result of this weakness, the input-state linearizable method less used 

compared with the input-output linearizable method [5]. 
After the feedback linearization process, the system model becomes linear in the form: 

ζ = Aζ + Bv,̇

W = Cζ               
} − − −− −− −− −− −− −− −− −− −− −− − (2) 

Where: ζ is r- dimensional vector of transformed state variables; v and w are m- dimensional 

vectors of transformed input and output variables respectively; and the matrices A; B and C are 

simple structures. 
Different techniques were applied in this area and yielded diverse results. For example, In 

[1], the authors explain in detail the principle of feedback linearizing control. In [2], Horacio J. 
and Marquez explain the analysis and design for nonlinear control systems. Hassan Khalil 
discusses the principle of adaptive output feedback control of nonlinear systems in [3] and [4]. 

Feedback linearization families of nonlinear systems are presented by Wang, Jianliang, and W. 
Rugh in [5]. In [6], Sastry and Shankar presented an analysis, stability, and control of nonlinear 

systems. While, nonlinear control of Multi-Input-Multi Output (MIMO) system using feedback 
linearization control method and PD controller for tracking purpose is introduced by Ghozlane, 
Wafa, and Jilani Knani in [7]. More details about feedback linearization of nonlinear MIMO 

variables can be found in [8], [9] and [10]. On the other hand, information about the adaptive 
MIMO nonlinear systems using fuzzy logic control and extreme learning machine can be found 

in [12] and [13]. In [15] and [16] the authors presented the output feedback linearization of 
neural network-based ANARX models and nonlinear control for output voltage regulation of a 
boost converter with a constant power load respectively. 

The remaining sections of the paper are structured as follows: Section II provides an in-
depth explanation of two distinct techniques of feedback linearization. These techniques are 
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presented to offer a comprehensive understanding of the principles behind feedback 
linearization and highlight their significance in addressing nonlinear systems effectively. In 
Section III, the problem statement is outlined, focusing on two specific single-input single-

output (SISO) nonlinear systems. The section delves into the details of these systems, 
discussing their characteristics and complexities. Section IV describes the simulation process 

applied using the principal input-output and input-state feedback linearization techniques. The 
section explains the methodology employed and the parameters considered during the 
simulation. Furthermore, the obtained results, including the system’s responses, are displayed 

and analyzed in detail. This section serves as a critical evaluation of the effectiveness and 
suitability of the feedback linearization techniques in addressing the identified problems. 
Finally, Section V provides the concluding remarks of this work. It summarizes the main 

findings, discusses the implications of the results, and highlights the contributions made by the 
study. The section also offers insights into potential future research directions and areas where 

further improvements can be made. Overall, this section serves as a comprehensive wrap-up of 
the paper, emphasizing the significance and implications of the presented work. 

2.  The Principle Of Feedback Linearization Method 

 

In this section, we present two techniques that can work in this area which are the input-
output feedback linearization technique and the input-state linearization technique. 

2.1. Input-Output Feedback Linearization Technique 

 

The discussion in this subsection focuses on the concept of linearization of input-output 

feedback in nonlinear systems. The primary aim of feedback linearization is to establish a linear 
relationship between the output Y and the new input V as shown Figure 1. For SISO systems 
in Equation 1, f;  g and h are sufficiently smooth in a domain U <  Rn. The mappings f ∶  U →
 Rn and g ∶  U →  Rn are called vector fields on U [11] and [14]. Referring to Equation 1, and 

by computing the first derivative of the output y with respect to x. 

�̇� =  
𝜕ℎ

𝜕𝑥
�̇� =  

𝜕ℎ

𝜕𝑥
 [𝑓(𝑥) + 𝑔(𝑥)𝑢] ≜ 𝐷𝑓ℎ(𝑥) + 𝐷𝑔ℎ(𝑥)𝑢,− −− −− −   (3) 

where: 

𝐷𝑓ℎ(𝑥) =  
𝜕ℎ

𝜕𝑥
 [𝑓(𝑥)],

𝐷𝑔ℎ(𝑥) =  
𝜕ℎ

𝜕𝑥
 [𝑔(𝑥)]

𝐷𝑔𝐷𝑓ℎ(𝑥) =  
𝜕𝐷𝑓ℎ

𝜕𝑥
𝑔(𝑥)}

 
 

 
 

− −− −− −− −− −− −− −− −− −−   (4) 

Then: 
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Figure. 1: Input-output feedback linearization technique [7] 

𝐷𝑓
0ℎ(𝑥) = ℎ(𝑥),                                                    

𝐷𝑓
2ℎ(𝑥) =  𝐷𝑓𝐷𝑓ℎ(𝑥) =  

𝜕(𝐷𝑓ℎ)

𝜕𝑥
𝑓(𝑥),              

.

..

𝐷𝑓
𝑘ℎ(𝑥) =  𝐷𝑓𝐷𝑓

𝑘−1ℎ(𝑥) =  
𝜕(𝐷𝑓

𝑘−1ℎ)

𝜕𝑥
𝑓(𝑥).     }

  
 

  
 

−− −− −− − −−    (5) 

Assumption 1: In Equation 5 if Dgh(x)u =  0, then y ̇ =  Dfh(x) ( independent of u). 

In order to expand the concept, we have a necessity to compute the second derivative and 
higher. 

𝑦(2) = 
𝜕𝐷𝑓 ℎ

𝜕𝑥
[𝑓(𝑥)+ 𝑔(𝑥)𝑢]         

=  𝐷𝑓
2ℎ(𝑥) +  𝐷𝑔𝐷𝑓ℎ(𝑥)𝑢,

} −− −− −− −− −− −− − − (6) 

again from the assumption 1, if DgDfh(x)u = 0, then y2 = Df
2h(x) (again independent of u). 

Repeating the calculations for higher derivative. 

Assumption 2:  , if  DgDf
i−1h(x) = 0, i = 1,2, … , r − 1,DgDf

r−1  ≠ 0, then u does not appear in 

y, y,̇ … ……. , yr−1. 

the equation 6 is modified as: 

𝑦(𝑟) = 𝐷𝑓
𝑟ℎ(𝑥) +   𝐷𝑔𝐷𝑓

𝑟−1ℎ(𝑥)𝑢− −− −− −− −− −− − −− (7) 

finally, 

𝑢 =  
1

 𝐷𝑔𝐷𝑓
𝑟−1ℎ(𝑥)

[−𝐷𝑓
𝑟ℎ(𝑥) + 𝑣].− − − − −− − − − −− − − − (8) 

By substituting with the value of u in the nonlinear system that represented in Equation 8, the 

nonlinear system becomes input-output linearizable and reduces to yr = v  i.e. chain of r 
integrator. 

 

Stability Analysis: 

Stability analysis is an essential aspect of the input-output feedback linearization technique. 
As we know, stability is not the primary objective of input-output feedback linearization, but 

Linear 
Controller 

Non-Linear 
Controller 

Non-Linear 
Plant 

Non-Linear Coordinate 
transformation 

𝒀𝒓𝒆𝒇  𝒗 𝒖 𝒚 

[𝒙𝟏 ,𝒙𝟐 , … . ,𝒙𝒏 ]
𝑻 

[𝒙𝟏 ,𝒙𝟐 , … . ,𝒙𝒏 ]
𝑻 

[𝒛𝟏 ,𝒛𝟐 , … . , 𝒛𝒏]
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the stability of the closed-loop system must be ensured when the linearized control design is 
applied [6]. According to [1],[2], [3] and [6]. 

 
Lemma 1:  The nonlinear system defined in Equation 1, is said to be relative degree m, 1 ≤
 m ≤  n in region U0  <  U if 

 DgD
i−1h(x) = 0,   i = 1,2, . . . . . . , m − 1. 

 DgD
m−1h(x) ≠ 0     for all x ∈  U0   . 

 
Lemma 2:  The nonlinear system defined in Equation 1, which has relative degree m ≤  n in 

the region U. If m =  n then for every x0 ∈  U, a neighborhood N of  x0 exists such that: 

𝑇(𝑥) =  [

ℎ(𝑥)
𝐷𝑓ℎ(𝑥)

..
𝐷𝑓
𝑛−1ℎ(𝑥)

] ,− − −− − − − −− − − − −− − − − − (9) 

bounded to N, is a diffeomorphism on N [5] and [6]. 
In addition, if m <  n, then for each x0 ∈  U, a neighborhood N of x0 and smooth functions. 

ψ1(x),…… . . , ψn−m(x)exist such that 
∂ψi

∂x
g(x) = 0, for 1 ≤  i ≤ (n − m) for all  x ∈ N, and 

the matrix. 

𝑇(𝑥) =  

[
 
 
 
 
 
 
 
 
 
𝜓1(𝑥)

..

.
𝜓𝑛−𝑚(𝑥)……… .
ℎ(𝑥)
𝐷𝑓ℎ(𝑥)

.

..
𝐷𝑓
𝑚−1ℎ(𝑥)]

 
 
 
 
 
 
 
 
 

=   [
𝜓(𝑥)
…… . .
𝜑(𝑥)

]    =    [
𝜁

…… . .
𝜉

]  − − −− − −  (10) 

which is bounded to N is a diffeomorphism on N. 
The next step is by taking the derivative for both 𝜁 and 𝜉 variables, we obtain: 

𝜁 ̇ =  𝑓0(𝜁, 𝜉)                                   

𝜉̇ =  𝐴𝑐𝜉 +  𝐵𝑐𝛾(𝑥)[𝑢 − 𝛼(𝑥)]
𝑦 =  𝐶𝑐𝜉                                         

} −− − − − −− − − − − (11) 

where 𝜉 ∈  𝑅𝑚  , 𝜁 ∈  𝑅
𝑛−𝑚, and (𝐴𝐶 ,𝐵𝐶 ,𝐶𝐶) is in controller canonical form representation of 

a number of 𝑚 integrators. 

𝑓0(𝜁 , 𝜉) =  
𝜕𝜓

𝜕𝑥
𝑓(𝑥)|𝑥=𝑇−1(𝑧),− − − − − −− − − − −− − −  (12) 

where: 

𝛾(𝑥) =   𝐷𝑔𝐷𝑓
𝑚−1ℎ(𝑥), and 𝛼(𝑥) =  

𝐷𝑓
𝑚ℎ(𝑥)

 𝐷𝑔𝐷𝑓
𝑚−1ℎ(𝑥)

. 
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In the normal form, the system is divided into two parts, the external part ξ and the internal part 

ζ, while the state feedback control is responsible for linearizing the external part. 

𝑢 =  𝛼(𝑥) +  𝛽(𝑥)𝑣.− −− − − − −− − − − − −− −  (13) 

The next step is by making ξ =  0 Equation 11 becomes: 

𝜁 ̇ =  𝑓0(𝜁, 0) − − −− − − − −− − − − −− − − − −− (14) 

which is called the zero dynamics. Therefore, the system described by Equation 14 which is in 
minimum phase is asymptotically stable [6] and [7]. 

2.2. Input-State Linearization 
 

In this section, we will briefly discuss the input-state linearization method for nonlinear 
systems, which has one input (without output) and represented by the following state equation: 

Figure. 2: Input-state linearization technique [17]. 

 

�̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢,− − −− − − − −− − − − −− − − − (15) 

The system in Equation 15 is input-state linearizable if there is a region ω in Rn that meets 

the following conditions: 

1) The vector fields {𝑔, 𝑎𝑑𝑓𝑔 , . . . . . , 𝑎𝑑𝑓
𝑛−1𝑔} are linearly independents in the region 𝜔. 

2) The set of vectors {𝑔, 𝑎𝑑𝑓𝑔, . . . . . , 𝑎𝑑𝑓
𝑛−1𝑔} are involutive. Where 𝑎𝑑𝑓𝑔(𝑥) is the Lie 

bracket of 𝑔(𝑥) with respect to 𝑓(𝑥) and mathematically, the Lie bracket [𝑔,𝑓] can be 

defined as: [𝑔;  𝑓] = 𝑔(𝑥)∇𝑓(𝑥) − 𝑓(𝑥)∇𝑔(𝑥), where ∇ represents the gradient 

л 

𝒁𝒌

=  𝝋(𝑿𝒌) 
𝑿𝒌−𝟏 = 𝒇(𝑿𝒌, 𝒖𝒌) 

𝜷 (𝝋(𝑿𝒌)) =
𝟏

𝒈(𝝋(𝑿𝒌))
 

𝜶 (𝝋(𝑿𝒌)) =
𝒇(𝝋(𝑿𝒌))

𝒈(𝝋(𝑿𝒌))
 

Input Transformation State Transformation 

Input-State Linearization 

Linear Controller 

𝒚𝒌 

𝒖𝒌 𝑿𝒌  
𝒁𝒌 
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operator, and 𝑔(𝑥) and 𝑓(𝑥) are vector fields defined on a common domain. From 

condition 1, the vector fields {𝑔, 𝑎𝑑𝑓𝑔 , . . . . . ,𝑎𝑑𝑓
𝑛−1𝑔}  are equivalent to the 

controllability matrix for linear system [𝐵 𝐴𝐵 𝐴2𝐵 …. 𝐴𝑁−1𝐵], and the 

involutivity condition indicates that a new vector of linear state through the states 

feedback can be found [17]. Finally, if both the conditions 1 and 2 are satisfied then the 

first state 𝑇1 can be found by solving the set of equations: ∇𝑇1𝑎𝑑𝑓
𝑖𝑔 = 0, 𝑖 =

1, 2, …… . , 𝑛 − 2, ∇𝑇1𝑎𝑑𝑓
𝑛−1𝑔 ≠ 0 and the state transformation matrix 𝑍 can be 

computed as: 

𝑍 = 𝑇(𝑥) =  [𝑇1 𝐷𝑓𝑇1 …… . . 𝐷𝑓
𝑛−1𝑇1]

𝑇
, − − −− −−   (16) 

and the input transformation: 

𝑢 =  𝛼(𝑥) +  𝛽(𝑥)𝑣.− −− − −− −− −− −− −− −− −(17) 

where 

α(x) =  
Df
nT1

DgDf
n−1T1

   and      β(x) =  
1

DgDf
n−1T1

. 

3. Problem Statement 

In this section, we present the problem statement by considering a typical example of two 
SISO nonlinear systems and compare the results obtained. First of all, let us modify Equation 
1 in the state form as: Consider the SISO nonlinear system represented by the following state 

model. 

�̇�1 = 𝑥2                      
�̇�2 = 𝑓(𝑥) + 𝑔(𝑥)𝑢,
𝑦 =  𝑥1                      

} − − −− −− −− −− −− −− −   (18) 

where x1 and x2 are the system states, u is the control signal and f(x),g(x) are nonlinear 

functions. 

Example 1: 

Consider the following nonlinear system: 

𝑚�̈� + 𝑛�̇� +𝑚𝑛 cos(𝑧) = 𝑢 −− −− −− −− −− −− −− (19) 

where 𝑚  and 𝑛  are constants with values 0.5, 0.05  respectively, and the objective is to ensure 

that the output tracks the reference input smoothly with 𝑃𝑂𝑇 <  11% and 𝑡 𝑞𝑑 <  0.4. In order 

to solve this problem, the first step we will define the following states: 𝑥1 = 𝑧, 𝑥2 = �̇� and 𝑦 =

 𝑥1 then Equation 18 becomes: 

�̇�1 =  �̇� =  𝑥2                                               

�̇�2 = �̈� =  − 
𝑛

𝑚
𝑥2 −𝑛 cos(𝑥1) +  

1

𝑚
𝑢

𝑦 = 𝑥1                                                           

}−− −− −− −− −− (20) 

The second step is to calculate the time derivative of the output tracking error, 𝑒 where: 

𝑒 =  𝑦𝑝 −𝑦 −− − −− −− −− −− −− −− −− −− −− − (21) 

from the equation 20, substitute the value of 𝑦 with 𝑥1. 
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�̇� =  𝑦�̇� − 𝑥1̇,− − −− −− −− −− −− − −− −  (22) 

from Equation 20, replace 𝑥1 and 𝑥2, and then take the second derivative of Equation (22). 

�̈� =  𝑦�̈� − 𝑥2,̇ − − −− −− −− −− −− −− −   (23) 

thence, 

�̈� =  𝑦�̈� + 
𝑛

𝑚
𝑥2+ 𝑛cos(𝑥1) − 

1

𝑚
𝑢 .− −−−− −−−− (24) 

To linearize Equation 24, the controller 𝑢 can be defined as: 𝑢 = 𝑛𝑥2 + 𝑛𝑚cos(𝑥1) − 𝑣, then 

by substituting this term into Equation 24. 

�̈� =  𝑦�̈� −𝑣,− −− −− −− −− −− −− −− −− (25) 

where 𝑣 = 𝑦�̈� + 𝑘1�̇� +  𝑘2𝑒, and the values of both 𝑘1 , 𝑘2 are constants. Then, Equation 25 

can be rewritten in the form: 

�̈� =  −𝑘1�̇� −  𝑘2𝑒.− −− −− − −− −− −− −− − (26) 

In order to calculate the constant k values, the final step is by comparing Equation 26 with the 

characteristic equation of the second order system [17] which is: 

𝑆2 + 2𝜁𝜔𝑛𝑆 + 𝜔𝑛
2 = 0.−− −− −− −− −− −− − (27) 

The values of 𝑘1 and 𝑘2 in this case are 22 and 256, which are determined using the values of 

POT and 𝑡 𝑞𝑑. 

Example 2: 

Consider the following nonlinear system: 

𝑚�̈� + 𝑛�̇� +𝑚𝑛 cos(𝑧2) = 𝑢. − −− −− −− −− −− − (28) 

using the same variables as in Example 1, and performing the same steps, we obtain:  𝑘1 = 22  

and  𝑘2 = 256. 

4. Simulation and Results 

The objective of this section is to utilize the two different techniques, input-output feedback 
linearization and input-state linearization, to solve the problems presented in examples 1 and 2.  
The objective is to achieve improved control and performance for the systems under 

consideration. Additionally, the results obtained from both techniques will be compared to 
assess their effectiveness and suitability for each specific problem. This comparative analysis 

will provide valuable insights into the strengths and limitations of each approach, aiding in 
determining the most appropriate technique for addressing similar problems in the future. 
Task (1)  

Simulation using the input-output feedback linearization technique. The simulation results 
obtained for the problem described in example 1 are shown in Figures 3, 4, while the results 

obtained for the problem described in example 2 are shown Figures 5 and 6. 
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Figure 3: The Output 𝑦(𝑡) tracks the reference input 𝑦𝑝 for problem which is addressed in example 1 

with m=0.5, n=0.05, k1 = 22 and 𝑘2 =256 using the input-output feedback linearization technique. 

 
Figure  4: The error for problem which addressed in example 1 with m=0.5, n=0.05, k1 = 22 

and 𝑘2 =256 using the input-output feedback linearization technique. 
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 . 

 
Figure 5: The output 𝑦(𝑡) tracks the reference input 𝑦𝑝for problem which addressed in example 2 

when 2  with m=0.5, n=0.05, k1 = 22 and 𝑘2 =256 using the input-output feedback linearization 

technique 

 
Figure 6:  The error for problem which addressed in example 2  with 𝑚= 0.5,𝑛 = 0.05, 𝑘1 =  22 

and 𝑘2 =256 using the input-output feedback linearization technique. 
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Based on the obtained results, the error observed in both cases falls within the range of 
−0.02 to 0.05. However, in order to further enhance these results, an adjustment will be made 
by increasing the values of variables k1 and k2 by 65 and 725 respectively. By utilizing the new 

values of k1 and k2, improved outcomes are achieved, as illustrated in the subsequent figures. 

This modification aims to refine the performance and accuracy of the system, potentially 
reducing the error and yielding more desirable results. Overall, the decision to increase k1 and 

k2 represents an attempt to optimize the system’s behavior, striving for improved accuracy and 

performance. The subsequent figures provide visual evidence of the effectiveness of this 
adjustment, allowing for a clearer understanding of the system’s enhanced capabilities and its 

ability to produce more desirable outcomes. 

 

Figure 7: The Output 𝑦(𝑡) Tracks the Reference Input 𝑦𝑝 for problem which addressed in example 1 

when m=0.5, n=0.05, k1 = 65 and 𝑘2 =725 using the input-output feedback linearization technique). 

 
Figure 8: The error for problem which addressed in example 1  with 𝑚 = 0.5, 𝑛 = 0.05, 𝑘1  =  65 

and 𝑘2  = 725 using the input-output feedback linearization technique. 
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Figure 9: The output y(t) tracks the reference input 𝑦𝑝 for problem which addressed in example 2 when 

m=0.5, n=0.05, 𝑘 1 =  65 and 𝑘2 =725 using the input-output feedback linearization technique. 

 
Figure 10:  The error for problem which addressed in example 2  with 𝑚 = 0.5, 𝑛 = 0.05,𝑘1 =  65 

and 𝑘2 =725 using the input-output feedback linearization technique 

From the results shown in Figures 7, 8, 9, and 10, a significant improvement has been 
achieved, and the error range has been decreased from −0.02: 0.05 to -0.005: 0.016. This 

reduction in the error range demonstrates the effectiveness of the applied modifications and 
optimizations in enhancing the accuracy and precision of the system. These findings indicate 
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that the adjustments made have successfully fine-tuned the system’s performance, leading to 
more reliable and desirable outcomes. 
Task (2) 

Simulation using the input-state feedback linearization technique. In Task (2), we use the 
same parameters that have been used in Task (1). The figures labeled as 11 and 12 display the 

simulation results obtained for the problem presented in Example 1. On the other hand, the 
figures denoted as 13 and 14 present the results obtained specifically for the problem addressed 
in Example 2. 

 

Figure 11: The output 𝑦(𝑡) tracks the reference input 𝑦𝑝  for problem which is addressed in example 1 

with 𝑚 = 0.5,𝑛 = 0.05,  𝑘1 =  22 and 𝑘2 =256 using the input-state feedback linearization technique. 

 
Figure 12: The error for problem which addressed in example 1 with 𝑚= 0.5,𝑛 = 0.05, 𝑘1= 22 and 

𝑘2 =256  using the input-state feedback linearization technique. 
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Figure 13: The output 𝑦(t) tracks the reference input 𝑦𝑝  for problem which is addressed in example 2 

with m=0.5, n=0.05, k1 = 22 and 𝑘2 =256 using the input-state feedback linearization technique 

 
Figure 14: The error for problem which addressed in example 2 with 𝑚= 0.5,𝑛 = 0.05, 𝑘 1 =  22 

and 𝑘2 =256 using the input-state feedback linearization technique . 

To reduce the error and enhance the obtained results, the values of k1 and k2 will be 

adjusted, by increasing them to 65 and 725 respectively. Figures 15 and 16 illustrate the results 
achieved for the problem described in Example 1. Similarly, Figures 17 and 18 illustrate the 

results obtained for the problem described in Example 2. 
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As anticipated, notable improvements have been accomplished, leading to a reduction in the 

error range for both problems outlined in Example 1 and Example 2. 

 

Figure 15: The output 𝑦(𝑡) tracks the reference input 𝑦𝑝  for problem which is addressed in example 1 

with 𝑚 = 0.5,𝑛 = 0.05, 𝑘1 =  65 and 𝑘2 = 725 using the input-state feedback linearization technique. 

 
Figure 16: The error for problem which addressed in example 1with 𝑚 = 0.5, 𝑛 = 0.05,𝑘1 =  65 

and 𝑘2 =725  using the input-state feedback linearization technique. 
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Figure 17: The output 𝑦(𝑡) tracks the reference input  𝑦𝑝  for problem which is addressed in example 2 

with 𝑚 = 0.5,𝑛 = 0.05, 𝑘1 = 65 and 𝑘2 = 725 using the input-state feedback linearization technique . 

 
Figure 18:  The error for problem which addressed in example 2 with 𝑚 = 0.5, 𝑛 = 0.05,𝑘1 =  65 

and 𝑘2 =725  using the input-state feedback linearization technique. 
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5. Conclusions and Future Work 
In summary, input-state feedback linearization focuses on transforming the system 

dynamics by manipulating the internal state variables, while input-output feedback linearization 
achieves linearization through manipulation of the input and output variables. The choice 
between these approaches depends on the availability and ease of measurement of the system’s 

internal states and the desired control objectives. Both techniques present good and close results 
for the problems under study described in Examples 1 and 2. Based on the results obtained, 

input-state feedback produces more accurate results compared with the input-output feedback 
linearization technique. This is because the applications used are known for direct 
measurement. Generally, input-state feedback linearization is more suitable than input-output 

feedback linearization in certain practical applications. Where direct measurement or reliable 
estimation of the system’s internal states is feasible. 

 
In future work, we propose exploring the challenges associated with linearizing MIMO 

nonlinear systems. This would involve applying the principles of input output and input-state 

linearization techniques to address the complexities of MIMO systems. By investigating these 
techniques, we can gain insights into effectively controlling and analyzing the behavior of 

MIMO nonlinear systems. Additionally, we suggest delving into the concept of linearization in 
the context of nonlinear adaptive systems, where the characteristics and parameters of the 
systems are either completely or partially unknown. This presents a unique set of challenges 

that require specialized approaches for achieving linearization and control. By examining the 
linearization concept within the framework of nonlinear adaptive systems, we can further 

enhance the understanding and develop effective strategies to handle such systems.  
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