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Abstract 
This study discusses the effect of the Rowat and Silverstone of Neural Oscillator for Defining 

Human Gait Patterns by using both the Genetic Algorithm and hybrid function. By omitting 

pulse generators in the Rowat and Silverstone of Neural Oscillator, because of that it changes 

to a new type of Central Patterns Generator. By optimizing a new type and compare with the 

real data that we get from Tema Motion software. This paper will show that it is possible to 

produce rhythmic patterns like the rhythmic patterns derived from real data without any sensor 

feedback. This study will also be concerned with the most effective parameters of the Rowat 

and Silverstone Neural Oscillator 

Keywords: The Rowat and Silverstone, Mathematical Modeling of One leg, stability analysis, 

Optimizing, The Rowat and Silverstone, Hybrid Function. 

INTROCUCTION 

A neural oscillator is formed by two neurons with inhibitive connections between them. The 

responses of two neurons of a neural oscillator suppress each other in such way one of them is 

extensor neuron and the other is flexor neuron. neural oscillators generally refer to rhythmic 

activity patterns observed in neural networks. These patterns are fundamental in various brain 

functions, including sensory processing, motor control, and cognitive processes. Researchers 

like Rowat and Silverstone might have contributed to this field through studies on how neural 

oscillations emerge, their mechanisms, or their role in brain function. Central Pattern 

Generators (CPGs) are found in the spine of both vertebrate and invertebrate animals and burst 

signal from the brainstem induces a periodic activity in the CPG [1], [2]. 

To begin with, CPGs are neural networks located in the spinal cord of vertebrate as well as 

invertebrate animals. These CPGs are designed to exclusively supply synchronized rhythmic 

pattern activities, viz., leg movement in the course of walking, respiration, or chewing [3] and 

[4]. One of the captivating characteristics of CPGs lies in their capacity to generate rhythmic 

signals over and above any rhythmic contribution from higher control centers or sensory 

response. In addition, CPGs are vigorous, versatile, and effortlessly adjustable. These 

compelling attributes render CPGs expedient for mobility control of robots with multiple joints, 

degrees of freedom (DOF), and even for kinematically redundant robots. Research into bio-

robotics has recently gained unprecedented momentum. The interest in the application of robots 

to enhance traditional mechatronics systems or to attend to particular issues related to biology 

has brought bio-robotics back to life, but with a different spirit [1] and [2]. The focus now is on 

how, in robotics, CPGs can be effectively manipulated to administer cadenced movements 
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related to crawling, flying, and swimming, and not only legged walking (for more details, see 

[3], [4] and [5]). 

A plethora of studies on CPGs have introduced fascinating results. Some of these studies 

have indicated that CPGs can in fact control some functions in the human body, viz., breathing 

and digestion [3], [5] and [6]. Other studies, based on the suppressive or stimulatory connection 

between the extensor neuron and the flexor neuron [7], [8] and [9], have revealed the potential 

of modelling a variety of physical structures of the limbs and arms of robots (see [10], [11], 

[12], [13] and [14]) by copying the control systems of robots. In the realm of robotics, numerous 

mathematical and physical models have been developed to mimic the movements of living 

creatures and reproduce rhythmic patterns akin to those observed in real biological systems. 

The Rowat-Selverston model primarily revolves around understanding the dynamics of 

rhythmic neural activity, such as the visual activity patterns in CPGs that control rhythmic 

movements in animals. The Rowat-Selverston model is designed to provide insights into the 

electrical properties and interactions between neurons within these neural circuits. 

Finally, some CPG configurations have been utilized to control biped locomotion in 

humanoid robots (see, [15], [16], [17], [18] and [19]). 

 

This paper figures out the effect of optimizing The Rowat-Selverston neural osculators, on 

the performance of one-leg movement of humans. First section in this study will discuss the 

simple kinematics systems of one leg with three degrees of Freedoms (3DOFs). The Second 

section, it discusses The Rowat and Silverstone of Neural Oscillator Model and change it to 

CPGs Model. Third section, we will look the stability analysis of the model. Fourth section will 

explain the way to get real data that will be used for comparison. Final section, it undertakes to 

optimize The Rowat-Selverston neural osculators and compare with real data with some new 

cost functions. 

KINEMATIC ANALYSIS AND MODELLING OF BIPED LOCOMOTION SYSTEMS 

Using actual data is likely the simplest and most direct approach to generate a trajectory of 

accelerated motion induced by Central Pattern Generators (CPG) or neural oscillators for 

bipedal locomotion. To understand the kinematic characteristics during walking, we initially 

explore the principles of bipedal kinematics in the sagittal plane, outlining the fundamental 

kinematic rules for robotic bipedal locomotion involving two or three degrees of freedom. [20] 

and [21]. We will compare the forward motion trajectory derived from actual data with that 

generated by CPGs. Figure 1 demonstrates how CPGs can be fine-tuned to create rhythmic 

patterns in the hip, knee, and ankle angles for one leg of a human when the lower body is 

horizontal. It's important to note that the outcomes depend on the method used to analyze CPGs. 
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Figure 1: The Planar biped model when the lower body is parallel to the ground 

A closer look into the kinematics of the hip, knee, and ankle angles in the swing phase reveals 

the following basic kinematics equations: 

The first coordinate (𝑥1, 𝑦1) yields 

          𝑥1 = 𝑥𝑑 + 𝐿1𝑐𝑜𝑠𝜃1    and     𝑦1 = 𝑦𝑑 + 𝐿1𝑠𝑖𝑛𝜃1. 

The second coordinate (𝑥2, 𝑦2) reveals that 

𝑥2 = 𝑥𝑑 + 𝐿1𝑐𝑜𝑠𝜃1 + 𝐿2𝑐𝑜𝑠𝜃2    and    𝑦2 = 𝑦𝑑 + 𝐿1𝑠𝑖𝑛𝜃1 + 𝐿2𝑠𝑖𝑛𝜃2, 

and the third coordinate (𝑥3, 𝑦3) translates into 

 𝑥3 = 𝑥2 + 𝐿3𝑐𝑜𝑠𝜃3    and     𝑦3 = 𝑦2 + 𝐿3𝑠𝑖𝑛𝜃3, 

where 𝑥𝑑  is the proceeding displacement (i.e., the distance during locomotion) and 𝑦𝑑 stands 

for the positive direction of the hip height at each step. 𝐿1, 𝐿2, and 𝐿3 represent three lengths: 

from the hip joint to the knee joint, from the knee joint to the ankle joint, and from the ankle 

joint to the end effector, respectively. The angles, 𝜃1, 𝜃2 and 𝜃3, which represent the hip, knee, 

and ankle angles, respectively, will acquire their rhythmic patterns from CPGs. With regard to 

𝑦𝑑 , It was presumed to be zero when the lower body was parallel to the ground. However, in 

this study, the researchers immobilized the hip joint, even though it was not immobilized during 

data collection. 

THE ROWAT AND SELVERSTON OF NEURAL OSCILLATOR MODEL TO CPGS 

MODEL: 

Biological neurons with several ionic channels are complex, hence difficult to model. Rowat 

and Silverstone (1993) present a simple model of a neuron for which two groups of currents are 

identified: a fast current and a slow current, each defined by a first order differential equation. 

Fast current is defined by Eq. 1 and slow current by Eq. 2. 

𝜏𝑚 (
𝑑𝑉

𝑑𝑡
) = −𝐹(𝑉, 𝜎𝑓) − 𝑞 + 𝐼𝑖𝑛𝑗                 (1) 

𝜏𝑠 (
𝑑𝑞

𝑑𝑡
) = −𝑞 + 𝜎𝑠𝑉                                      (2) 

where 

𝐹(𝑉, 𝜎𝑓) = 𝑉 − 𝐴𝑓𝑡𝑎𝑛 ℎ (
𝜎𝑓𝑉

𝐴𝑓
)                            
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Where 𝜏𝑚 and 𝜏𝑠 are the time constant of the neuron and the time constant of slow currents 

activation respectively. Where 𝜏𝑚 < 𝜏𝑠, 𝐼𝑖𝑛𝑗 is the injected current, 𝑉 the cellular membrane 

voltage, and 𝑞 the slow current.  𝐹(𝑉, 𝜎𝑓)  is a non-linear current voltage for the fast current, 

and 𝐴𝑓 adjusts the width and without affecting the degree of the N-shape. 

The results obtained from the model were compared to the actual/true results, and it was 

found that the injected current caused errors, which hindered the comparison. As a result, 

the injected current 𝐼𝑖𝑛𝑗 was removed/deleted. This led to the model shifting from a neural 

to a central pattern generator (CPG).  

𝜏𝑚 (
𝑑𝑉

𝑑𝑡
) = −𝐹(𝑉, 𝜎𝑓) − 𝑞                            (3) 

𝜏𝑠 (
𝑑𝑞

𝑑𝑡
) = −𝑞 + 𝜎𝑠𝑉                                      (4) 

where 

𝐹(𝑉, 𝜎𝑓) = 𝑉 − 𝐴𝑓𝑡𝑎𝑛 ℎ (
𝜎𝑓𝑉

𝐴𝑓
) 

STABILITY ANALYSIS 

In this part, the stability analysis for each type of coupling given in the previous section will be 

discussed. We consider one neural as: 

𝜏𝑚 (
𝑑𝑉

𝑑𝑡
) = −𝐹(𝑉, 𝜎𝑓) − 𝑞

𝜏𝑠 (
𝑑𝑞

𝑑𝑡
) = −𝑞 + 𝜎𝑠𝑉                      

𝐹(𝑉, 𝜎𝑓) = 𝑉 − 𝐴𝑓 tanh(
𝜎𝑓𝑉

𝐴𝑓
)  
}
  
 

  
 

                                              (5) 

It is enough to find to analysis one to know the stabile region: 

We know that :  

 
tanh−1(𝑧) =

1

2
𝐿𝑜𝑔 (

1 + 𝑧

1 − 𝑧
) , |𝑧| < 1   𝑎𝑙𝑠𝑜 𝑡𝑎𝑛ℎ(𝑧) =

𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
                                                  

𝐿𝑜𝑔𝑧 = 𝐿𝑛(𝑟) + 𝑖(𝜃 + 2𝑛𝜋)   , 𝑟 > 0 , 𝛼 < 𝜃 < 𝛼 + 2𝜋
 

To find the equilibrium points of the given system (5), we need to find values of V and q such 

that both equations are satisfied: 

𝜏𝑚 (
𝑑𝑉

𝑑𝑡
) = −𝐹(𝑉, 𝜎𝑓) − 𝑞 

𝜏𝑠 (
𝑑𝑞

𝑑𝑡
) = −𝑞 + 𝜎𝑠𝑉 

Let’s first focus on the first equation: 

𝜏𝑚 (
𝑑𝑉

𝑑𝑡
) = −𝐹(𝑉, 𝜎𝑓) − 𝑞 

Rearranging the equation: 

 

𝜏𝑚 (
𝑑𝑉

𝑑𝑡
) = −𝑞 − 𝐹(𝑉, 𝜎𝑓) 

Now, let’s look at the second equation: 
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𝜏𝑠 (
𝑑𝑞

𝑑𝑡
) = −𝑞 + 𝜎𝑠𝑉 

Rearranging this equation: 

𝜏𝑠 (
𝑑𝑞

𝑑𝑡
) + 𝑞 = 𝜎𝑠𝑉 

Now, we want to find values of V and q such that both equations are satisfied simultaneously. 

This means that at the equilibrium points, both left-hand sides (LHS) and right-hand sides 

(RHS) of these equations must be equal. Therefore, we have: 

Equilibrium for the first equation: 

𝜏𝑚 (
𝑑𝑉

𝑑𝑡
) = −𝑞 − 𝐹(𝑉, 𝜎𝑓) 

At equilibrium, 
𝑑𝑉

𝑑𝑡
= 0, so we get: 

0 = −𝑞 − 𝐹(𝑉, 𝜎𝑓) 

Equilibrium for the second equation: 

𝜏𝑠 (
𝑑𝑞

𝑑𝑡
) + 𝑞 = 𝜎𝑠𝑉 

At equilibrium, 
𝑑𝑞

𝑑𝑡
= 0, so we get: 

𝑞 = 𝜎𝑠𝑉 

Now, we have two equations: 

0 = −𝑞 − 𝐹(𝑉, 𝜎𝑓) 

𝑞 = 𝜎𝑠𝑉 

We can substitute the second equation into the first to find the equilibrium points: 

0 = −𝜎𝑠𝑉 − 𝐹(𝑉, 𝜎𝑓) ⇒ 0 = −𝜎𝑠𝑉 − (𝑉 − 𝐴𝑓 tanh(
𝜎𝑓𝑉

𝐴𝑓
)) 

Now, we need to solve this equation for 𝑉. The specific form of 𝐹(𝑉, 𝜎𝑓) is not provided, so 

the equilibrium points will depend on the function 𝐹(𝑉, 𝜎𝑓). You would need to know the details 

of 𝐹(𝑉, 𝜎𝑓) to find the exact equilibrium points. Essentially, you’ll need to solve this equation 

for 𝑉 with the specific form of 𝐹(𝑉, 𝜎𝑓). Keep in mind that this is a nonlinear equation, and the 

solutions may not have a simple closed-form expression. You may need to use numerical 

methods or software to find the equilibrium points numerically.  

Firstly: we k need to find the equilibrium points as the following the steps 

(
𝑑𝑉

𝑑𝑡
) =

1

𝜏𝑚
(−𝑉 + 𝐴𝑓 tanh(

𝜎𝑓𝑉

𝐴𝑓
) − 𝑞) = 0

(
𝑑𝑞

𝑑𝑡
) =

1

𝜏𝑠
(−𝑞 + 𝜎𝑠𝑉) = 0                      

  

 

The first the equilibrium point is the origin point when we assume that 𝐼𝑖𝑛𝑗 = 0. In this case we 

will have CPG instead of neural. 
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OPTAINING REAL DATA AND OPTIMIZATION 

We used a high-speed camera to capture the movement of the leg, as depicted in Figure 2. This 

recording provided us with actual data on how the leg moves under various conditions. 

Analyzing this data helped us assess the validity of our findings. Additionally, we compared 

this real-world data with results generated by Central Pattern Generators (CPG) to evaluate the 

accuracy of these results and how closely they replicate natural leg motion. 

 

Figure. 2: Video-recorded data and high-speed camera 

The researchers utilized the Tema Motion software to analyze video-recorded real data. The 

outcomes from using Tema Motion to determine the hip and knee angles are depicted in Figure 

3. 

 
Figure 3: Angles of the hip and knee that are collected by real data 

Our objective is to contrast actual data with enhanced neural oscillators that generate movement 

patterns in a single leg with two degrees of freedom, mimicking natural leg motion. each pattern 

generator generates joint angle patterns, and we employed a genetic algorithm to derive motion 

in the 𝑥 direction and identify the optimal parameter set for this motion. to achieve this, we 

utilized the following objective function : 

𝐽 = ∑((𝜃1(𝑘) − 𝜃ℎ(𝑘))
2
+ (𝜃2(𝑘) − 𝜃𝑘(𝑘))

2
)

𝑚

𝑘=1

 

Expressing the equation mentioned earlier in words shows that 𝜃1 and 𝜃2 represent the outputs 

of the previously defined Central Pattern Generators (CPGs). where 𝜃ℎ and 𝜃𝑘 are the angles 
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of hip and knee of the real data respectively and that 𝑚 is the total number of step times. The 

conclusive goal here is to minimize differences between the outputs of the CPGs and the real 

data for the angles of the hip and the knee in the region captured by stability analysis. In 

addition, the equation above unfolds two constraints, namely 0 ≤ 𝜃1,  𝜃2 ≤ 𝜋. In this study, a 

hybrid function was employed post-Genetic Algorithm (GA) termination to enhance the fitness 

function value during optimization. This hybrid function is notable because it starts from the 

GA's final point, which can be specified within the hybrid function's settings. The optimization' 

results are showing in the following Tables 1, 2, 3, 4 and 5 

 

Tables 1: Uncoupled two neural networks in bounded in 31.13 seconds (N_in_pop=45) 

Cross 

over 
𝑥𝑏 𝐽 

Parameters value  
{𝜎𝑠1, 𝜎𝑓1, 𝜏𝑠1, 𝜏𝑚1, 𝐴𝑓1, 𝐼𝑖𝑛𝑗1, 𝜎𝑠2, 𝜎𝑓2, 𝜏𝑠2, 

𝜏𝑚2, 𝐴𝑓2, 𝐼𝑖𝑛𝑗2 , 𝑠1, 𝑠2, 𝑠3, 𝑠4} 
Start at initial points 

0.2 0.8890 
34.535

4 

1.0811    2.1565    0.3697    0.3484   10.0057    

0.2654    1.2748    0.2544    0.0631   18.7190    

1.8609    1.8128    0.5054    2.0405 

1.0809   2.1563      

0.3697  0.3483   

0.0052      0.2652  

1.2747    0.2544     

0.0630 18.7184  

1.8607     1.8131 

0.5051    2.0399 

0.4 0.8969 
34.534

9 

1.0812    2.1565    0.3697    0.3487   10.0039    

0.2655    1.2749    0.2544    0.0631   18.7183    

1.8611    1.8136    0.5067    2.0429 

 

0.6 0.8828 
34.533

4 

1.0813    2.1567    0.3698    0.3486   10.0036    

0.2656    1.2750    0.2545    0.0632   18.7179    

1.8620    1.8140    0.5069    2.0436 

 

0.8 0.9036 
33.919

0 

0.3360    1.3503    0.2851    0.0881   11.5815    

0.2671    1.2745    0.2226    0.0564   21.2114    

0.5871    1.8128    0.5154    2.0507 

 

1.0  0.9007 
34.161

5 

0.3360    1.3503    0.2851    0.0881   11.5815    

0.2671    1.2745    0.2226    0.0564   21.2114    

0.5871    1.8128    0.5154    2.0507 

 

The results of Table 1 are showing by the following Figures 

 

Figure 4: The optimization results are corresponding to the initial conditions 𝑉(0) = 1 and 𝑞(0) = 1, 

with crossover 1.0. 
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 Figure 5 : One leg animation Uncoupled two CPGs: This animation corresponds to the values: 

𝜎𝑠1 = 0.3360 , 𝜎𝑓1 = 1.3503 , 𝜏𝑠1 = 0.2851, 𝜏𝑚1 =  0.0881,  𝐴𝑓1 = 11.5815,  𝜎𝑠2 =

0.2671,  𝜎𝑓2 = 1.2745    , 𝜏𝑠2 = 0.2226, 𝜏𝑚2 = 0.0564, 𝐴𝑓2 = 21.2114   , s1 = 0.5871, s2 =

 1.8128, s3 =  0.5154, s4 =  2.0507,. This solution corresponds to the same values in Figure4 

 

Figure 6: The Error between outputs of CPGs and Real data 
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Figure 7: Angles of the real data and output of CPGs 

Tables 2: Uncoupled two neural networks in bounded in 31.13 seconds (N_in_pop=60) 

Cross 

over 
𝑥𝑏 𝐽 

Parameters value  
{𝜎𝑠1, 𝜎𝑓1, 𝜏𝑠1, 𝜏𝑚1, 𝐴𝑓1, 𝐼𝑖𝑛𝑗1, 𝜎𝑠2, 𝜎𝑓2, 𝜏𝑠2, 

𝜏𝑚2, 𝐴𝑓2, 𝐼𝑖𝑛𝑗2 , 𝑠1, 𝑠2, 𝑠3, 𝑠4} 

Start at initial 

points 

0.2 0.9151 33.6660 

0.2219      1.2316     0.2907    0.0592   

12.2378    0.2639     1.2702    0.2070    

0.0522     22.7822    0.3892    1.8198    

0.5116       2.0518 

0.3360   

1.3503    

0.2851 0.0881  

11.5815   

0.2671 1.2745   

0.2226   

0.0564 

21.2114  

0.5871  

1.8128 0.5154   

2.0507 

0.4 0.8856 33.6770 

0.2222    1.2319    0.2908    0.0593   

12.2399   0.2640    1.2703    0.2073    

0.0523   22.7821    0.3906    1.8208    

0.5122    2.0527 

 

0.6 0.8924 33.6471 

0.2223    1.2320    0.2911    0.0593   

12.2561  0.2640    1.2703    0.2073    

0.0523   22.7623    0.3904    1.8212    

0.5123    2.0529 

 

0.8 0.8810 33.6915 

0.2231    1.2328    0.2895    0.0592   

12.2932  0.2553    1.2615    0.2082    

0.0508   22.7847    0.3906    1.8158    

0.4940    2.0482 

 

1.0 0.8832 33.8839 

0.2196    1.2289    0.2855    0.0576   

12.4650  0.1568    1.1609    0.2154    

0.0322   24.7881    0.3839    1.8137    

0.2993    2.0234 
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Figure 8: The optimization results are corresponding to the initial conditions 𝑉(0) = 1 and 𝑞(0) = 1, 

with crossover 0.6. 

 
Figure 9 : One leg animation Uncoupled two CPGs: This animation corresponds to the values: 

𝜎𝑠1 = 0.2223, 𝜎𝑓1 = 1.2320, 𝜏𝑠1 = 0.2911 , 𝜏𝑚1 =   0.0593,  𝐴𝑓1 = 12.2561,  𝜎𝑠2 =

0.2640  ,  𝜎𝑓2 = 1.2703, 𝜏𝑠2 = 0.2073,   𝜏𝑚2 = 0.0523 , 𝐴𝑓2 = 22.7623, s1 = 0.3904 , s2 =

 1.8212, s3 =  0.5123, s4 = 2.0529. This solution corresponds to the same values in Figure8. 

 
Figure 10 The Error between outputs of CPGs and Real data 
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Figure 11: Angles of the real data and output of CPGs. 

Tables 3: Uncoupled two neural networks in bounded in 31.13 seconds (N_in_pop=90) 

Cross over 𝑥𝑏 𝐽 

Parameters value  
{𝜎𝑠1, 𝜎𝑓1, 𝜏𝑠1, 𝜏𝑚1, 𝐴𝑓1, 𝐼𝑖𝑛𝑗1, 𝜎𝑠2, 𝜎𝑓2, 𝜏𝑠2, 

𝜏𝑚2, 𝐴𝑓2, 𝐼𝑖𝑛𝑗2 , 𝑠1, 𝑠2, 𝑠3, 𝑠4} 

0.2 0.8954 33.6612 

0.2224    1.2321    0.2918    0.0594   12.2561  

0.2640    1.2703    0.2073    0.0523   22.7630   

0.3914    1.8216    0.5122    2.0533 

0.4 0.8920 33.6879 

0.2225    1.2323    0.2922    0.0596    12.2547  

0.2640    1.2704    0.2074    0.0523   22.7631   

0.3919    1.8227    0.5124    2.0540 

0.6 0.8969 33.5311 

0.2160    1.2249    0.2815    0.0560   12.6823   

0.2586   1.2643    0.2000    0.0496   23.6497    

0.3778   1.8134    0.5024    2.0523 

0.8 0.9118 33.5124 

0.2160    1.2249    0.2815    0.0560   12.7106    

0.2587   1.2645    0.2001    0.0496   23.6526    

0.3786   1.8147    0.5039    2.0571 

1.0 0.8985 33.5764 

0.2159    1.2248    0.2810    0.0559   12.7139   

0.2417    1.2472    0.2023    0.0468   23.6972   

0.3780    1.8137    0.4694    2.0530 
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Figure 12: The optimization results are corresponding to the initial conditions 𝑉(0) = 1 and 𝑞(0) = 1, 

with crossover 0.8. 

 
Figure 13 : One leg animation Uncoupled two CPGs: This animation corresponds to the values: 

𝜎𝑠1 = 0.2160, 𝜎𝑓1 = 1.2249 , 𝜏𝑠1 = 0.2815, 𝜏𝑚1 =  0.0560,  𝐴𝑓1 = 12.7106,  𝜎𝑠2 = 0.2587,  

𝜎𝑓2 = 1.2645 , 𝜏𝑠2 =  0.2001,   𝜏𝑚2 = 0.0496, 𝐴𝑓2 = 23.6526 , s1 = 0.3786, s2 =

 1.8147 , s3 =  0.5039, s4 =   2.0571,. This solution corresponds to the same values in 

Figure12 
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Figure 14 The Error between outputs of CPGs and Real data 

 
Figure 15: Angles of the real data and output of CPGs. 

Tables 4: Uncoupled two neural networks in bounded in 31.13 seconds (N_in_pop=120) 

Cross 

over 
𝑥𝑏 𝐽 

Parameters value  
{𝜎𝑠1, 𝜎𝑓1, 𝜏𝑠1, 𝜏𝑚1, 𝐴𝑓1, 𝐼𝑖𝑛𝑗1, 𝜎𝑠2, 𝜎𝑓2, 𝜏𝑠2, 

𝜏𝑚2, 𝐴𝑓2, 𝐼𝑖𝑛𝑗2 , 𝑠1, 𝑠2, 𝑠3, 𝑠4} 

0.2 0.9118 33.5124 

0.2161    1.2250    0.2817    0.0561   12.7103    

0.2588    1.2646    0.2003    0.0497   23.6441    

0.3788    1.8148    0.5041    2.0570 

0.4 0.8973 33.5249 

0.2162    1.2251    0.2819    0.0561   12.7099    

0.2589    1.2647    0.2003    0.0497   23.6435    

0.3794    1.8163    0.5043    2.0573 

0.6 0.9027 33.5145 

0.2163    1.2252    0.2814    0.0561   12.7033    

0.2590    1.2648    0.2003    0.0497   23.6418    

0.3792    1.8167    0.5051    2.0599 

0.8 0.9159 33.4264 

0.2090    1.2169    0.2677    0.0519   13.3852    

0.2421    1.2473    0.1952    0.0454   24.4737    

0.3654    1.8095    0.4693    2.0475 

1.0 0.9273 33.4966 

0.2085    1.2162    0.2646    0.0513   13.5184    

0.2159    1.2207    0.1973    0.0409   24.7945    

0.3638    1.8043    0.4175    2.0432 
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Figure 16: The optimization results are corresponding to the initial conditions 𝑉(0) = 1 and 𝑞(0) = 1, 

with crossover 0.8. 

 
Figure 17 : One leg animation Uncoupled two CPGs: This animation corresponds to the values: 

𝜎𝑠1 = 0.2090, 𝜎𝑓1 = 1.2169    , 𝜏𝑠1 = 0.2677 , 𝜏𝑚1 =  0.0519 ,  𝐴𝑓1 = 13.3852 ,  𝜎𝑠2 =

0.2421 ,  𝜎𝑓2 =  1.2473 , 𝜏𝑠2 = 0.1952 ,   𝜏𝑚2 = 0.0454, 𝐴𝑓2 = 24.4737, s1 = 0.3654 , s2 =

 1.8095 , s3 =   0.4693 , s4 =  2.0475 ,. This solution corresponds to the same values in 

Figure16 

 
Figure 18: The Error between outputs of CPGs and Real data 
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Figure 19: Angles of the real data and output of CPGs. 

OPTIMIZATION RESULTS ANALYSIS: 

During optimization by using Genetic Algorithm and Hybrid function, also it is used ode23 

solve and population size 45, we obtain that the best result when the crossover is 0.8, we get 

that the objective function is 𝐽 = 33.9190. While in the second trial, we did optimization under 

population size 6, we obtain that the best result when the crossover is 0.6, we get that the 

objective function is 𝐽 = 33.6471.  The third trial, we did optimization under population size 

90, we get that the best result when the crossover is 0.8, we get that the objective function is 

𝐽 = 33.5124. Likewise in the fourth trial, we did optimization under population size 120, we 

obtain that the best result when the crossover is 0.8, we get that the objective function is 𝐽 =
33.4264. 

 

THE STUDY OF PARAMETERS:  

In this part of the study, we experimented with optimizing the parameters of Central Pattern 

Generators (CPGs) to identify the parameters that have the most significant impact on system 

performance. Our findings reveal that parameters 𝜎𝑠2 , 𝜎𝑠3 are the most sensitive to changes. 

Specifically, when the value of either parameter is slightly decreased, the foot begins to 

oscillate around its starting point. The detailed results are presented in the following table5: 

Table5: Compare the optimization of the bidirectional two CPGs with the real data by changing the 

value of 𝜎𝑠2 , 𝜎𝑠3. 

Changing the value of 𝜎𝑠2 , 𝜎𝑠3 depends on the results of the optimization in the 

Figure 17 

𝑥𝑏 𝐽 

𝜎𝑠3 𝜎𝑠2 Parameters value  
{𝜎𝑠1, 𝜎𝑓1, 𝜏𝑠1, 𝜏𝑚1, 𝐴𝑓1, 𝐼𝑖𝑛𝑗1, 𝜎𝑠2, 𝜎𝑓2, 𝜏𝑠2, 

𝜏𝑚2, 𝐴𝑓2, 𝐼𝑖𝑛𝑗2 , 𝑠1, 𝑠2, 𝑠3, 𝑠4} 

0.9159 33.4264 

 0.2421 0.2090 0.2090    1.2169    0.2677    0.0519   

13.3852    0.2421    1.2473    0.1952    

0.0454   24.4737    0.3654    1.8095    

0.4693    2.0475 

0.8727 33.4264 

0.2410 0.2080 0.2080   1.2169    0.2677    0.0519   

13.3852    0.2410    1.2473    0.1952    

0.0454   24.4737    0.3654    1.8095     

0.4693      2.0475 
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Likewise, making a small reduction in the constant values 𝜎𝑓2 , 𝜎𝑓3 causes a normal foot 

movement in the initial phases, but the movement soon shifts to an abnormal state. Table6 

provides a summary of the results obtained from this reduction: 

Table6: Compare the optimization of the bidirectional two CPGs with the real data by changing the 

value of 𝜎𝑓2 , 𝜎𝑓3. 

Changing the value of 𝜎𝑓2 , 𝜎𝑓3 depends on the results of the optimization in the Figure 

17 

𝑥𝑏 𝐽 

𝜎𝑓3 𝜎𝑓2 Parameters value  
{𝜎𝑠1, 𝜎𝑓1, 𝜏𝑠1, 𝜏𝑚1, 𝐴𝑓1, 𝐼𝑖𝑛𝑗1, 𝜎𝑠2, 𝜎𝑓2, 𝜏𝑠2, 

𝜏𝑚2, 𝐴𝑓2, 𝐼𝑖𝑛𝑗2 , 𝑠1, 𝑠2, 𝑠3, 𝑠4} 

0.9159 33.4264 
1.2473 1.2169 0.2090    1.2169    0.2677    0.0519   13.3852    

0.2421    1.2473    0.1952    0.0454   24.4737    

0.3654    1.8095    0.4693    2.0475 

0 33.4264 

1.2463 1.2130 0.2090    1.2130    0.2677    0.0519   13.3852    

0.2421    1.2463    0.1952    0.0454   24.4737     

0.3654    1.8095     0.4693    2.0475 

Similarly, when the values of 𝜏𝑠2 , 𝜏𝑠3 are slightly decreased, both displacement and velocity 

decrease, and while the foot movement was initially normal, it began to oscillate. The table7 

illustrates this result: 

Table7: Compare the optimization of the bidirectional two CPGs with the real data by changing the 

value of 𝜏𝑠2 , 𝜏𝑠3. 

Changing the value of 𝜏𝑠2 , 𝜏𝑠3 depends on the results of the optimization in the Figure 

17 

𝑥𝑏 𝐽 

𝜏𝑠3 𝜏𝑠2 Parameters value  
{𝜎𝑠1, 𝜎𝑓1, 𝜏𝑠1, 𝜏𝑚1, 𝐴𝑓1, 𝐼𝑖𝑛𝑗1, 𝜎𝑠2, 𝜎𝑓2, 𝜏𝑠2, 

𝜏𝑚2, 𝐴𝑓2, 𝐼𝑖𝑛𝑗2 , 𝑠1, 𝑠2, 𝑠3, 𝑠4} 

0.9159 33.4264 
0.1952 0.2677 0.2090    1.2169    0.2677    0.0519   13.3852    

0.2421    1.2473    0.1952    0.0454   24.4737    

0.3654    1.8095    0.4693    2.0475 

-

0.6906 
33.4264 

0.1942 0.2667 0.2090    1.2169    0.2667   0.0519   13.3852    

0.2421    1.2473    0.1942    0.0454   24.4737    

0.3654    1.8095    0.4693    2.0475 

Likewise, a small reduction in the constant values c and v results in an initial forward movement 

of the foot, followed by a backward retraction, ultimately leading to an abnormal gait. The 

following table summarizes these findings  : 

Table8: Compare the optimization of the bidirectional two CPGs with the real data by changing the 

value of 𝜏𝑚2
, 𝜏𝑚3

. 

Changing the value of 𝜏𝑚2
, 𝜏𝑚3

 depends on the results of the optimization in the 

Figure 17 

𝑥𝑏 𝐽 

𝜏𝑚3
  𝜏𝑚2

 Parameters value  
{𝜎𝑠1, 𝜎𝑓1, 𝜏𝑠1, 𝜏𝑚1, 𝐴𝑓1, 𝐼𝑖𝑛𝑗1, 𝜎𝑠2, 𝜎𝑓2, 𝜏𝑠2, 

𝜏𝑚2, 𝐴𝑓2, 𝐼𝑖𝑛𝑗2 , 𝑠1, 𝑠2, 𝑠3, 𝑠4} 
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0.9159 33.4264 0.0454 0.0519 

0.2090    1.2169    0.2677    0.0519   13.3852    

0.2421    1.2473    0.1952    0.0454   24.4737    

0.3654    1.8095    0.4693    2.0475 

0.4798 33.4264 0.0444 0.0510 

0.2090    1.2169    0.2677    0.0510   

13.3852    0.2421    1.2473    0.1952    

0.0444  24.4737    0.3654    1.8095    0.4693    

2.0475 

Likewise, a small reduction in the constant values 𝐴𝑓2 , 𝐴𝑓3results in a backward movement of 

the foot, maintaining the same displacement and velocity. This finding is summarized in Table9: 

Table9: Compare the optimization of the bidirectional two CPGs with the real data by changing the 

value of 𝐴𝑓2 , 𝐴𝑓3. 

Changing the value of 𝐴𝑓2 , 𝐴𝑓3 depends on the results of the optimization in the Figure 

17 

𝑥𝑏 𝐽 

𝐴𝑓3   𝐴𝑓2 Parameters value  
{𝜎𝑠1, 𝜎𝑓1, 𝜏𝑠1, 𝜏𝑚1, 𝐴𝑓1, 𝐼𝑖𝑛𝑗1, 𝜎𝑠2, 𝜎𝑓2, 𝜏𝑠2, 

𝜏𝑚2, 𝐴𝑓2, 𝐼𝑖𝑛𝑗2 , 𝑠1, 𝑠2, 𝑠3, 𝑠4} 

0.9159 33.4264 24.4737 13.3852 

0.2090    1.2169    0.2677    0.0519   13.3852    

0.2421    1.2473    0.1952    0.0454   24.4737    

0.3654    1.8095    0.4693    2.0475 

0.0138 33.4264 25.4737 15.3852 

0.2090    1.2169    0.2677    0.0519  

15.3852   0.2421    1.2473    0.1952    

0.0454   25.4737   0.3654    1.8095    

0.4693    2.0475 

CONCLUSION:  

The Rothstein-Silverstein neural model was employed to identify human walking patterns 

using a genetic algorithm and a hybrid function. The study revealed that when comparing 

the neural model's results to real-world data, the injected current 'c' had to be removed as it 

introduced errors that hindered the comparison. This led to a transformation of the model 

from a neural model to a central pattern generator (CPG). Real-world data was obtained 

using the Tema Motion software. Additionally, experiments showed that slight alterations in 

the parameter settings of the Rothstein-Silverstein model resulted in varying outcomes. 
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