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Abstract.  

The abstract theory applies to examples of algebraic equations and nonlinear boundary value 

problems are discussed, including systems of reaction diffusion equations. The link s between 

bifurcation and stability showing are also investigated, the study discusses how increasing a 

diffusion coefficient in a reaction-diffusion system can lead to bifurcation and also to a stable 

solution becoming unstable. 
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1 INTROCUCTION 

Bifurcation phenomena arise in many parts of mathematical physics and an understanding of their nature is of 

practical as well as theoretical importance[1], [2] and [3]. Reaction–diffusion systems are mathematical models 

which explain how the concentration of one or more substances distributed in space changes under the influence 

of two processes, local chemical reactions in which the substances are transformed into each other, and diffusion 

which causes the substances to spread out over a surface in space [4],[5], [6] and [7]. This paper draws on and 

derives support from the studies mentioned above and investigates how stability and bifurcation are linked as 

both depend on the signs of eigenvalues. This study discusses the stability of solutions and reaction diffusion 

system, and also, it discusses the surprising fact that increasing the amount of diffusion in a system can cause a 

stable solution to become unstable. Finally, the paper establishes a connection between stability and the direction 

of bifurcation for semi linear boundary value problems. The researchers consider the stability of solutions of 

systems of ODE's and diffusion equations and study how the stability is linked to bifurcation 

2 REACTION DIFFUSION EQUATION 

Let us consider the following equation 

𝑢𝑡 = 𝐴𝑢, 𝑢(0) = 𝑢0                       (1.1) 

Where 𝐴: 𝑋 → 𝑌 and 𝑋 and  𝑌 are Banach spaces with 𝑋 ⊆ 𝑌. If 𝑋 = 𝑌 = ℝ𝑛, we have a system of ODE's. If 

𝑋 = {𝑢 ∈ 𝐶2([0,1]), 𝑢(0) = 0 = 𝑢(1)} and 𝑌 = 𝐶([0,1]) we have a reaction diffusion equation. The solution 

of (1.1) is denoted by 𝑢(𝑡, 𝑢0). An equilibrium �̅� is stable if all solutions which start near �̅� stay nearby. 
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Moreover, if all nearby solutions converge to �̅� as 𝑡 → ∞,then �̅� is asymptotically stable [6], [8] and [9]. Let’s 

give definitions as follow: 

An equilibrium solutions �̅� is stable if for all 𝜀 > 0 there exists 𝛿 > 0 such that for every 𝑢0 for which |𝑢0 − �̅�| <

𝛿, the solution 𝑢(𝑡, 𝑢0) satisfies |𝑢(𝑡, 𝑢0) − �̅�| < 𝜀 for all 𝑡 ≥ 0. The equilibrium solution �̅� is asymptotically 

stable if it is stable and there exists 𝛿 > 0 such that |𝑢(𝑡, 𝑢0) − �̅�| → 0 as 𝑡 → ∞ for all 𝑢0 for which |𝑢0 − �̅�| <

𝛿 [10].  

3 LINEAR AND NONLINEAR SYSTEMS                                                                             

Let us consider the linear system 

𝑢𝑡 = 𝐿𝑢                                           (1.2) 

Where 𝐿 is linear with eigenvalues  𝜆1 < 𝜆2 < ⋯ and corresponding eigenfunctions 𝜙1, 𝜙2, … such that  

{𝜙1, 𝜙2, … } form a basis for  𝑌. To show that 𝑢 = 0 is stable if all eigenvalues of 𝐿 has negative real part.  Suppose 

that the general solution of equation (1.2) can be written 

𝑢(𝑡) = ∑ 𝐶𝑛(𝑡)𝜙𝑛

∞

𝑛=1

                     (1.3) 

It is needed to find 𝐶𝑛(𝑡). By differentiating the equation (1.3), then, we obtain that 

(∑ 𝐶𝑛(𝑡)𝜙𝑛

∞

𝑛=1

)

′

= ∑ 𝐶′𝑛(𝑡)𝜙𝑛

∞

𝑛=1

= 𝐿 (∑ 𝐶𝑛(𝑡)𝜙𝑛

∞

𝑛=1

) = ∑ 𝐶𝑛(𝑡)𝐿𝜙𝑛

∞

𝑛=1

= ∑ 𝜆𝑛𝐶𝑛(𝑡)𝜙𝑛

∞

𝑛=1

 

Hence, it is required 

𝐶′𝑛(𝑡) = 𝜆𝑛𝐶𝑛(𝑡) 

And so, we get  𝜆𝑛𝐶𝑛(𝑡) = 𝐴𝑒𝜆𝑛𝑡 , where 𝐴 is a constant. Thus, we obtain the solution 

𝑢(𝑡) = ∑ 𝐴𝑒𝜆𝑛𝑡𝜙𝑛

∞

𝑛=1

 

Zero solution is stable. It can be shown similarly that if 𝐿 has a positive eigenvalue then 𝑢 = 0 is unstable. Let 

us consider nonlinear equation 𝑢𝑡 = 𝐹(𝑢). Since 𝑢 ⟶ 𝐷𝐹(0)𝑢 is the best linear approximation to 𝐹(𝑢) is not 

surprising that it can be proved that if 𝑢 = 0 is  a stable solution of 𝑢𝑡 = 𝐷𝐹(𝑢), i.e., if all the eigenvalues of 

𝐷𝐹(0)𝑢 have negative real part, then 𝑢 = 0 is a stable solution of 𝑢𝑡 = 𝐷𝐹(𝑢). On the other hand, if 𝐷𝐹(0)𝑢 

has a positive eigenvalue then 𝑢 = 0 is an unstable solution. Example 1    

let us consider the nonlinear equation 

𝑢𝑡 = 𝜆𝑢 − 𝑐𝑢2 where 𝑐 ∈ 𝑅 and 𝑐 ≠ 0. 

Hence, 

𝐹(𝑢) = 𝜆𝑢 − 𝑐𝑢2. 
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Calculating the Fréchet derivative, we get that   

𝐹′(𝑢)ℎ = (𝜆 − 2𝑐𝑢)ℎ. 

Hence, 𝐹′(0)ℎ = 𝜆ℎ and so, if ℎ ≠ 0,   𝐹′(0)ℎ = 𝜇ℎ ⟺ 𝜆ℎ = 𝜇ℎ ⟺ 𝜆 = 𝜇.  Hence 𝑢 = 0  is a stable when 𝜆 < 0 

and 𝑢 = 0 is an unstable when 𝜆 > 0. This confirms the conclusion that we reach from the phase planes 

Figure 1.1  

……………………………..                                 …………………………….. 

        Phase plane when 𝜆 < 0                                                        phase plane when 𝜆 > 0 

Figure1.1: phase planes when 𝑢 = 0  is a stable if 𝜆 < 0 and unstable if 𝜆 > 0 

Example 2 

Let us consider the parabolic equation 

𝑢𝑡 = 𝑢𝑥𝑥 + 𝜆𝑓(𝑢) for 0 < 𝑥 < 1,  𝑡 > 0; 𝑢(0, 𝑡) = 0 = 𝑢(1, 𝑡) 

The equation above can be written as 

 𝑢𝑡 = 𝐹(𝜆, 𝑢) where 𝐹: 𝑅 × 𝑋 ⟶ 𝐶([0,1]) with 𝑋 = {𝑢 ∈ 𝐶2([0,1]): 𝑢(0) = 0 = 𝑢(1)} is defined as  

𝐹(𝜆, 𝑢) = 𝑢𝑥𝑥 + 𝜆𝑓(𝑢). 

 Calculating the Fréchet derivative, we obtain 

𝐹𝑢(𝜆, 𝑢)ℎ = ℎ𝑥𝑥 + 𝜆ℎ𝑓′(𝑢) 

 and so when 𝑢 = 0                                                                                                                                                         

𝐹𝑢(𝜆, 0)ℎ = ℎ𝑥𝑥 + 𝜆ℎ𝑓′(0). 

Thus, the eigenvalues 𝜇 of 𝐹𝑢(𝜆, 0) are values of 𝜇 such that                                                                         

ℎ𝑥𝑥 + 𝜆ℎ𝑓′(0) = 𝜇ℎ with ℎ(0) = 0 = ℎ(1)                               (1.4) 

The equation (1.4) has non-zero solutions and it can be written as  

−ℎ𝑥𝑥 = (𝜆𝑓′(0) − 𝜇)ℎ  with  ℎ(0) = 0 = ℎ(1). 

Let us assume  

𝛾 = 𝜆𝑓′(0) − 𝜇. 

Then, we require that 

−ℎ𝑥𝑥 = 𝛾ℎ with  ℎ(0) = 0 = ℎ(1) 
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The eigenvalues  𝛾 = 𝜋2, 4𝜋2, . . ., corresponding to eigenfunctions 𝜙1 = sin (𝜋𝑥), 𝜙2 = sin (2𝜋𝑥),…….., hence, 

we obtain non zero solution of the equation (1.4) when 𝑓′(0) − 𝜇 = 𝑛2𝜋2    for some 𝑛, for example  𝜇 =

𝜆𝑓′(0) − 𝑛2𝜋2. Hence 𝑢 = 0 is a stable equilibrium point, if 

𝜆𝑓′(0) − 𝑛2𝜋2 < 0 ⇒ 𝜆 <
𝑛2𝜋2

𝑓′(0)
 for all 𝑛 ⇒ 𝜆 <

𝜋2

𝑓′(0)
.  

If  𝜆 >
𝜋2

𝑓′(0)
. Then, the equation (1.4) has a positive eigenvalue and so 𝑢 = 0 is an unstable equilibrium point.  

4 STABILITY OF THE REACTION DIFFUSION SYSTEMS. 

This section is essentially concerned with stability properties of uniform state solutions to systems of 

reaction diffusion equations. we consider the system of 𝑛 reaction diffusion equations. 

𝜕𝑢

𝜕𝑡
= 𝐷∆𝑢 + 𝐹(𝑢)    𝑜𝑛  Ω,

𝜕𝑢

𝑑𝑛
= 0  𝑜𝑛  ∂Ω                         (1.5) 

Where Ω is a bounded region in 𝑅𝑛 , 𝑢 ∈ 𝑅𝑛 , 𝐷 is an 𝑛 × 𝑛 diagonal matrix and 𝐹: 𝑅𝑛 ⟶ 𝑅𝑛 . Then, solutions of 

the corresponding systems of ODE's 

𝑢𝑡 = 𝐹(𝑢) 𝑢 ∈ 𝑅𝑛                                                                           (1.6) 

Are also solutions of the reaction diffusion system. We would expect the addition of diffusion to make solutions 

more likely to be stable, we might expect that 𝑢 = 0  is a stable solution of (1.5) whenever is a stable solution 

of (1.6).  We show that this true for the case of single equation. 

Let us assume 𝑢 = 0 is a stable of the single equation 𝑢𝑡 = 𝐴𝑢, where 𝐴 is a negative constant. Let us consider 

the single reaction diffusion equation 𝑢𝑡 = 𝑑Δ + 𝐴𝑢, this equation more likely to be stable to systems of 

reaction diffusion equations. The stability of the solution 𝑢 = 0 is determined by the sign of the eigenvalues 

                                                   𝑑Δ𝑢 + 𝐴𝑢 = 𝜇𝑢                                                     (1.7)                    

−𝑑Δ𝑢 − (𝐴 − 𝜇)𝑢 = 0                                                   (1.8) 

Hence 𝜇 is an eigenvalue of the equation (1.8), if and only if 𝐴 − 𝜇 is an eigenvalue of – 𝑑Δ𝑢  with Neumann 

boundary condition i.e., 𝐴 − 𝜇=0, 𝜇1, 𝜇2, i.e.,𝜇 = 𝐴,  𝐴 − 𝜇1. Since 𝐴 < 0 then, all eigenvalues of the equation 

(1.8) <0 and so, the equilibrium solution is stable. We show that this is not true for the case of a general system 

as follows. Let us assume 𝑢 − 0 is a stable solution of general linear system 𝑢𝑡 = 𝐴𝑢. Hence all the eigenvalues 

of 𝐴 have negative part. We now consider the general reaction diffusion system 

                                                             𝑢𝑡 = 𝐷𝛥𝑢 + 𝐴𝑢                                                          

The stability the zero solution for this system is determined by of the eigenvalues 𝜇  of  

𝐷Δ𝑢 + 𝐴𝑢 = 𝜇𝑢                              

−𝐷𝛥𝑢 − 𝐴𝑢 = −𝜇𝑢                     (1.9) 
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Non zero solutions of (1.9) occur when −𝜇  is an eigenvalue of one of the matrices 𝜇𝑖𝐷 − 𝐴  i.e μ is an 

eigenvalue of one of the matrices  −𝜇𝑖𝐷 + 𝐴.  

Although all the eigenvalues of −𝜇𝑖𝐷 and of 𝐴 have negative real part, it is still possible that −𝜇𝑖𝐷 + 𝐴 has a 

positive eigenvalue and so (1.9) can have a positive eigenvalue.  To illustrate this case, let us give an 

example. The matrix 

                                                                  𝐴 = [
−10          5
−5            2

]                                                                                                                        

has negative eigenvalues, but by choosing  𝜇1 = 1 and 𝐷 = [
30         0
0          1

], therefore, it is obtained that.  

                                       𝐴 − 𝜇1𝐷 = [
−10 − 30                5

        −5                2 − 1
],                                              

This has one positive and one negative eigenvalue. Hence in this case 𝜇 = 0 is a stable solution of the system 

of ODE's  𝑢𝑡 = 𝐴𝑢 but an unstable solution of the reaction system 𝑢𝑡 = 𝐷𝛥𝑈 + 𝐴𝑢.  

5 STABILITY OF THE BIFURCATING SOLUTIONS 

By considering the following problem                                                                                                        

−𝜇𝑥𝑥 = 𝜆𝑓(𝑢),    𝑢(0) = 0 = 𝑢(1)                                     (1.10) 

where 𝑓(0) = 0 and 𝑓′(0) > 0. According to the Crandall and Rabinowitz theorem, then there is a nontrivial 

continuously differentiable curve through (𝜆1, 0), of the  form of (𝜆(𝑠), 𝑢(𝑠)), where 𝑢(𝑠) = 𝑠𝜙1 + 𝑠𝜓(𝑠), and 𝑠 is 

small number and 𝜙1 is the first eigenvalue of −𝜇𝑥𝑥 with zero boundary conditions i.e., 𝜙1(𝑥) = sin (𝜋𝑥). In order 

to investigate the stability of the solution 𝑢(𝑠). By linearization of the equation (1.10), then  

                               𝑤𝑥𝑥 + 𝜆𝑓′(𝑢(𝑠))𝑤 = 𝜇𝑤                                                      (1.11) 

The solution 𝑢(𝑠) will be stable (unstable) if the eigenvalue 𝜇 corresponding to the positive eigenfunction 𝑤 < 0 (>

0). Substituting the solution  (𝜆(𝑠), 𝑢(𝑠)) in the equation (1.10). Then, 

−𝑢𝑥𝑥(𝑠) = 𝜆(𝑠)𝑓(𝑢(𝑠))                                                                 (∗) 

Differentiating this equation with respect to 𝑠 yield the new system 

−𝑢𝑥𝑥𝑠(𝑠) = 𝜆′(𝑠)𝑓(𝑢(𝑠)) + 𝜆(𝑠)𝑓′(𝑢(𝑠))𝑢𝑠(𝑠) 

Let us consider 𝜑 = 𝑢𝑠(𝑠). It is clear that by  𝑢(𝑠) = 𝑠𝜙1 + 𝑠𝜓(𝑠), and so 𝑢𝑠(0) = 𝜙1 > 0, and 𝑢𝑠(𝑠) > 0 for 𝑠 

close to zero. Then, 

−𝜑𝑥𝑥(𝑠) = 𝜆′(𝑠)𝑓(𝑢(𝑠)) + 𝜆(𝑠)𝑓′(𝑢(𝑠))𝜑                             (1.12)  

We multiply (1.11) by 𝜑  and (1.12) by 𝑤, and  by adding new both equations, and integrate to obtain 
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∫(𝑤𝑥𝑥𝜑 − 𝜑𝑥𝑥𝑤)𝑑𝑥 = 𝜇 ∫ 𝑤𝜑𝑑𝑥 + 𝜆′(𝑠) ∫ 𝑓(𝑢) 𝑤𝑑𝑥 

And also, by using integration parts, the new results can be written as: 

∫(𝑤𝑥𝑥𝜑 − 𝜑𝑥𝑥𝑤)𝑑𝑥 = 0                                                         

Hence, 

𝜇 =
−𝜆′(𝑠) ∫ 𝑓(𝑢) 𝑤𝑑𝑥

∫ 𝑤𝜑𝑑𝑥
                                             (1.13) 

We have that 𝑢(𝑠) > 0 for small positive 𝑠 and 𝑢(𝑠) < 0 for small negative 𝑠. Hence 𝑓(𝑢) > 0 (<0) for 𝑠 small and 

positive (negative), and so∫ 𝑓(𝑢) 𝑤𝑑𝑥 satisfies the same sign property. As ∫ 𝑤𝜑𝑑𝑥 > 0, it is easily to determine the 

sign of 𝜇 in terms of the signs 𝜆′(𝑠). By looking at 𝜆′(0) > 0. If 𝑠 > 0, 𝜆(𝑠) > 𝜆1 and is 𝑠 < 0, 𝜆(𝑠) < 𝜆1, and so 

the bifurcation diagram is as in the Figure 1.2 

 

                                                                            𝑢 

 

                                                                                                  𝑆 

                                                                                                                                             𝜆 

                                                                                                          𝑈 

Figure 1.2: Bifurcation diagram for 𝑢(𝑠)  

If 𝑠 > 0, ∫ 𝑓(𝑢) 𝑤𝑑𝑥 > 0 and so 𝜇 < 0. Hence 𝑢(𝑠) is a stable solution. On the other hand, if 𝑠 < 0, 

∫ 𝑓(𝑢) 𝑤𝑑𝑥 < 0 and so 𝜇 < 0. Hence 𝑢(𝑠) is an unstable solution.  Let us now look at  𝜆′(0) < 0. Then, if 𝑠 > 0, 

𝜆(𝑠) < 𝜆1 and if 𝑠 < 0, 𝜆(𝑠) > 𝜆1, To see the bifurcation diagram look at the Figure 1.3 for this case. 

                                                         𝑢                                                                                                                      

                                                                            U 

                                                                                                      𝜆   

                                                                      S                      

Figure 1.3: Bifurcation diagram when 𝜇 < 0  

If 𝑠 > 0, ∫ 𝑓(𝑢) 𝑤𝑑𝑥 > 0 and so 𝜇 > 0. Hence, 𝑢(𝑠) is an unstable solution. While if 𝑠 < 0, ∫ 𝑓(𝑢) 𝑤𝑑𝑥 < 0 

and so 𝜇 > 0. Hence, 𝑢(𝑠) is a stable solution.  Finally, by looking at the case 𝜆′(0) = 0. Let us first assume 𝜆′′(0) >

0. Hence 𝜆  has local minimum at 𝑠 = 0 and so we have bifurcation diagram of the form                

                                                             𝑢               

                                                                                S 

                                                                       S      U                           𝜆    
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                                                                   S   

Figure 1.4: Bifurcation diagram when 𝜇 > 0  

                                                                                                                                

Let us investigate the stability of 𝑢(𝑠) for 𝑠 > 0. Then, 𝜆′(𝑠) > 0 and ∫ 𝑓(𝑢) 𝑤𝑑𝑥 > 0 and so                                                                                                                                                    

𝜇 =
−𝜆′(𝑠) ∫ 𝑓(𝑢) 𝑤𝑑𝑥

∫ 𝑤𝜑𝑑𝑥
< 0 

and so 𝑢(𝑠)  is a stable solution. On the other hand, for 𝑠 < 0. We have  𝜆′(𝑠) < 0 and ∫ 𝑓(𝑢) 𝑤𝑑𝑥 < 0  and so 

again         

𝜇 =
−𝜆′(𝑠) ∫ 𝑓(𝑢) 𝑤𝑑𝑥

∫ 𝑤𝜑𝑑𝑥
< 0 

and so 𝑢(𝑠)  is a stable solution.  By considering the case 𝜆′′(0) < 0. Then, 𝜆 has local maximum at 𝑠 = 0 and so, 

the bifurcation diagram is shown in the Figure 1.5:  

                                                                              𝑢 

                                                                                  U 

                                                                                      S              U              𝜆    

                                                                                     U    

Figure 1.5: Bifurcation diagram of 𝑢(𝑠) 

Let us now investigate the stability of 𝑢(𝑠) for 𝑠 > 0. Then 𝜆′(𝑠) < 0 and so the least eigenvalue of the problem 

linearized about 𝑢(𝑠) is    

𝜇 =
−𝜆′(𝑠) ∫ 𝑓(𝑢) 𝑤𝑑𝑥

∫ 𝑤𝜑𝑑𝑥
> 0 

and so 𝑢(𝑠)  is an unstable solution. On the other hand if 𝑠 < 0, we have 𝜆′(𝑠) > 0 and so                                                                                                                                                                                                                 

𝜇 =
−𝜆′(𝑠) ∫ 𝑓(𝑢) 𝑤𝑑𝑥

∫ 𝑤𝜑𝑑𝑥
> 0 

and so 𝑢(𝑠) is again an unstable solution.  It is needed to show how our results apply by giving the following 

example                                                                                       

−𝑢𝑥𝑥 = 𝜆 sin(𝑢) ,    𝑢(0) = 0 = 𝑢(1) 

It is given 𝑓(𝑢) = sin (𝑢). Then, 𝑓′(0) = 1, 𝑓′′(0) = 0  and 𝑓′′′(0) = −1 . Thus, it is obtained that   𝜆′(0) = 0 and 

𝜆′′(0) > 0, and so the bifurcation diagram is as in the Figure 1.4 
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 6 CONCLUSIONS                                                                                                                               

In this paper, we have discussed the stability of the solutions showing how bifurcation and stability are linked, how 

a uniform solution can become unstable as diffusion (the bifurcation parameter) increases and finally for boundary 

value problems establish a connection between the stability and direction of bifurcation of bifurcating solutions. 
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