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Abstract

The ever-growing volumes of data demand efficient storage and reliable communication solutions.
Compressing information without compromising quality is a crucial challenge faced by modern
systems. Meanwhile, the need for high-speed, long-distance data transfer continues to push the
boundaries of optical transmission technologies. Overcoming these dual obstacles is essential for
enabling innovative applications across diverse sectors. in this research, Huffman and LZW
algorithms were used and achieved good results. An average compression ratio of 1:47 was obtained
for text files, while an average compression ratio of 1:10 was achieved for audio files. Huffman
coding, which is a lossless data compression method, provided a higher throughput rate, making it
suitable for applications where processing speed is a priority. On the other hand, the LZW
algorithm, which is also a lossless technique, provided a higher compression ratio without adding
additional encoding to the files, although this came at the cost of higher (RAM) Random Access
Memory consumption. In the field of audio compression, a down sampling algorithm was used
along with the Fast Fourier Transform (FFT) to effectively reduce the sampling rate of audio files.
This approach resulted in good compression ratios while preserving the sound characteristics, as
evidenced by the obtained Signal-to-Noise Ratio (SNR), Mean Square Error (MSE), and Peak
Signal-to-Noise Ratio (PSNR) values. By fine-tuning the down sampling factor, which was found
to give good results and provide, an excellent balance between compression efficiency and sound
quality when its value was between 3 and 10. The bidirectional fiber optic link also demonstrated
good performance in data transmission, with low loss values, excellent Bit Error Rate (BER) value
less than 1x 10~ *5and Q-factor higher than 7, high Optical Signal-to-Noise Ratio (OSNR) levels
above 18dB, This optical communication system can find applications in high-speed data
transmission, long-distance communications, and other areas that require reliable and high-
bandwidth data transfer. Overall, this research highlights the multi-faceted capabilities in both data
compression and optical communications. By the seamless integration of Huffman and LZW
algorithms, audio down sampling, and fiber optic technologies, a system was implemented and
simulated to provide a solution that can meet a wide range of applications, from efficient data
storage and transmission to high performance communication systems.
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Introduction

The last decade has been witnessing a transformation some call it a revolution in the way we
communicate, and the process is still under way. This transformation includes the ever-present,
ever-growing Internet; the explosive development of mobile communications; and the ever-
increasing importance of video communication. Data compression is one of the enabling
technologies for each of these aspects of the multimedia revolution. It would not be practical to put
text, let alone audio and video, on websites if it were not for data compression algorithms. Cellular
phones would not be able to provide communication with increasing clarity was it not for
compression. The advent of digital TV would not be possible without compression. Data
compression, which for a long time was the domain of a relatively small group of engineers and
scientists, is now ubiquitous, Long-distance calls make use of compression. Modems and fax
machines benefit from compression. Listening to music on an MP3 player or watching a DVD
results in entertainment courtesy of compression. [1]

In brief, data compression is the art or science of representing information in a compact form. These
compact representations are created by identifying and using structures that exist in the data. Data can be
characters in a text file, numbers that are samples of speech or image waveforms, or sequences of numbers
that are generated by other processes. The need for data compression arises from the fact that an
increasing amount of information that is generated and used in digital form, represented by bytes of data,
is increasing, the number of bytes required to represent multimedia data can be enormous. For example,
in order to digitally represent 1 second of video without compression (using the CCIR 601 format), More
than 20 megabytes, or 160 megabits, are needed. The number of seconds in a movie makes it easy to see
why compression is required. To represent 2 minutes of uncompressed CD-quality music (44,100 samples
per second, 16 bits per sample) requires more than 84 million bits. Downloading music from a website at

Vol 7, No.1, Jan - Jun. 2025 | OPEN ACCESS - Creative Commons CC Bn @_gu

279



PR CA(] ‘s pa ddaa
Bn Surman Journal for Science and Technology VoI"7 I\f;ﬁ:_i; 2'025

sjst.scst.edu.ly ISSN: Online (2790-5721) - Print (2790-5713) Pages: 278 ~ 294

these rates would take a long time. An early example of data compression is Morse codel, developed by
Samuel Morse in the mid-19th century. Letters sent by telegraph are encoded with dots and dashes.
Morse noticed that certain letters occurred more often than others. In order to reduce the average time
required to send a message; he assigned shorter sequences to letters that occur more frequently, such as
e (-)and a (- -), and longer sequences to letters that occur less frequently, such as q (——-) and j (-——-). This
idea of using shorter codes for more frequently occurring characters is used in Huffman coding,

System Design & Implementation

This system is a comprehensive data compression and transmission system that leverages a
combination of proven compression algorithms and optimized transport mechanisms. At the core
of the system are two powerful compression techniques - Huffman coding and LZW for text
compression. These algorithms work to significantly reduce the file sizes of the source materials,
enabling faster and more reliable transmission over the network.

Furthermore, a downs sampling algorithm tailored for audio data is incorporated into the system.

This technique intelligently reduces the sampling rate and bit depth of the audio signals, preserving
the essential perceptual characteristics while dramatically decreasing the overall data footprint. This
is particularly beneficial for low-bandwidth scenarios where full-fidelity audio may not be feasible.
The compressed data is then transmitted over an optical fiber link, taking advantage of the inherent
high-speed and low-latency properties of fiber optic technology. This ensures that the compressed
data reaches the destination quickly and with minimal degradation, providing a seamless user
experience.
At the receiving end, the system employs complementary decompression algorithms to restore the
original text and audio data, allowing for faithful reconstruction of the transmitted content. This
end-to-end solution combines the power of advanced compression techniques with the reliability of
fiber optic connectivity, delivering a robust and efficient platform for the transmission of digital
information. The Figure (3-1) shows the general block diagram for the proposed system.

Crata —F{ Compressor * Transmithar PR v R VR e R e

F

Communication

Channel Errar Check

£y

Data

Expander }1— Receher

Figure 1-1: simple system general block diagram
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The Figure (1-2) Shows more details block diagram for the proposed System.

Input Source Data Channel Modulation Transmitter
Data Coding Compression Coding
T Noise
Error Communication "‘.
Check Channel <>
Qutput Source Data Channel . .
- le— e . l«—{ Demodulation j«—{ Receiver
Data Decoding Decompression Decoding

Figure 1-2: Full system Block diagram
Proposed Compression / Decompression methods
Highly efficient, lossless compression of text data is enabled by the Huffman coding algorithm
and LZW algorithm at the heart of the system, substantially reducing file sizes without sacrificing
any of the original content or quality. The full integrity and fidelity of the transmitted information
is ensured by this lossless text compression, providing a robust and reliable solution for the
exchange of digital documents and communications. Powerful lossless coding is combined. The
General Block Diagram for The Lossless Compression is shown in Figure (1-3).

Compressor

X1(K)

k
Data —— Model Encoder y(K) Compressed

Data

1
1
]
1
b e e e e e e e e e e e e e e e e o2

Figure 1-3: Lossless Compression Block Diagram

The Figure (1-4) shows the General Block Diagram for Lossless Text Compression
Compressor

____________________________

c(k) | Compressed

J—‘ Model " I Codos

X(Kk) \ P i

Text : i Encoder : (k)
! Key-Map 1
‘ J m(k) Y(K)  compressed
S t .................... ’ Codes

Figure 1-4: General Block Diagram for lossless Text Compression
Were
y(k) = m(k) + c(k)
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The Figure (1-5) Shows the General Block Diagram for The Lossless Decompression

Expander
k) ' xo(k
Compressed  Y(K) Inverse Decoder | 2(k) Data
Data : Model '

Figure 1-5 Lossless Decompression Block Diagram
And for the Lossless Compression / Decompression notice that:
X1(k) = X2(k)

The Figure (1-6) shows the General Block Diagram for Lossless Text Decompression
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Figure 1-6: General Block Diagram for lossless Text Decompression

Were
c(k) = y(k) —m(k)

The down sampling algorithm used in the proposed system intelligently reduces the sampling rate
and bit depth of audio signals, dramatically decreasing the overall data footprint. While this
process involves a measure of loss compression, it preserves the essential perceptual
characteristics of the original audio. The Figure (1-7) Shows the General Block Diagram for The
Loss Compression

Compressor

1 L]

L] 1

xi(kK) 'k k

Data #v. Model — Filter :L» Encoder L&» Com[;);?assed
[ 1
: :
L]

Figure 1-7: Loss Compression Block Diagram

The Figure (1-8) Shows the General Block Diagram for The Loss Decompression

Expander
g T Tt TEmEmmE :
k) "ok xa(k
Compressed _ Y(K) ! Inverse ; (k) Decoder 2(k) Data
Data ' Model " >
L)

Figure 1-8: Loss Decompression Block Diagram
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And for the Loss Compression / Decompression notice that:
X1(k) = X2(k)

The Figure (1-9) shows the General Block Diagram for Loss Audio Compression.

WAV Compressed
Audio Audio

S(k H(k -
s1(k) Transformer (k) Filter () Inverse s2(k)
Transformer

Figure 1-9: loss Audio Compression Block Diagram
Were
S(k) = T[s1]
H(k) = S(k) * A(k)
s2(k) = T~ [H(k)]
Were T being the Transfer-Function.

The Figure (1-10) shows the General Block Diagram for Proposed Loss Audio Compression.

Filter
Frequency :
Analysis d
(FFT) :

X(f -
ThresholdingH Al)ia\;stil;wg
Figure 1-10: Proposed loss Audio Compression Block Diagram

WAy
Audio

Compressed
Audio

Freguency to
Time

$2(K)

' Mapping
! (IFFT)

---------------------

Were
N-1
—2jnkf
S(f) = Z sli(k)x e N
k=0
Were

N is the number of samples in the signal s1(k).
k is the sample index, ranging from 0 to N-1.
f is the frequency variable, which can take values from 0 to (N-1)/N.
j represents the imaginary unit v (-1).
The threes holding operation can be represented as a multiplication of the Fourier transform S (f)
with the threes holding transfer function T(f):
X(f)=S() xT(f)
The anti-aliasing filtering operation can be represented as a multiplication of the thresholder
signal X(f) with the anti-aliasing transfer function A(f):
H(f) = X(f) X A(f)
So, the output s2(k) can be represented as follow:
s2(k) = T [H(f)]
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s2(k) = H(f)x e N

f=0
The complete mathematical representation of the process can be written as:
= 2jnkf
s200= ) SO XT() X AP X e A
f=0

The Figure (1-11) shows the General Block Diagram for Proposed Optical Fiber Transmission

Model.
Computer 1 \ ‘ Computer 2

‘ Network Media Optical-Fiber Media Network ’

Handler Converter Cable Converter Handler

Figure 1-11: Optical Fiber Transmission Block Diagram
Huffman-Encoding Module

The Figure (1-12) shows the Huffman Compression algorithm general block diagram.

— Binary
X(k k
Text (k) P(rzoobuil:;gl:y P Tree
Encoder
b(k)
Huffman Map
Encoder Encoder

Data
Encoder

lc(k)

Compressed
Data

Figure 1-12: Huffman compression block diagram
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The Figure (1-13) shows the Huffman decompression algorithm general block diagram.

Compressed C(K) Fiter m(k) Map
Data Decoder
p(k)
h(k)
Huffman
Decoder
y(k)
x(k) Data
Text Decoder

Figure 1-13: Huffman decompression block diagram

Huffman coding Compression algorithm can be listed in the next steps:

Start: This is the beginning of the process.

Calculate Characters Probabilities: The first step is to calculate the probabilities of the characters
appearing in the data.

Generate Huffman Binary Tree: Based on the character probabilities, a Huffman binary tree is
generated. This tree will be used to encode the characters.

Encode the Characters using the tree: The characters are encoded using the Huffman binary tree,
which assigns shorter codes to more frequent characters and longer codes to less frequent characters.
Padding Encoded Characters: The encoded characters may need to be padded to ensure they are a
multiple of 8 bits (1 byte) in size.

Convert Encoded Data to Bytes: The padded, encoded characters are then converted into bytes.
Merge Encoded Data with Encoded Tree: The encoded data and the Huffman binary tree are merged
together.

Save Merged Data to One File: The final step is to save the merged data (encoded characters and
Huffman tree) to a single output file.

End: This is the completion of the process.
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The Figure (1-14) shows the Huffman Coding compression algorithm flowchart.

Calculate Characters
Probabilities

Generate Huffman Binary

Encode the Characters

using the tree Tree
Padding Encoded Convert Encoded Data to
Characters Bytes
IMerge Encoded Data with | Convert Encoded Tree to
Encoded Tree Bytes

!

Save Merged Data to One
File

Figure 1-14: Huffman compression flowchart

Huffman coding Decompression algorithm can be listed in the next steps:

Start: This is the beginning of the decoding process.

Split Encoded Data from Encoded Tree in the File: The first step is to split the encoded data and the
Huffman binary tree that were previously merged and stored in a file.

Reverse the Huffman Binary Tree: The Huffman binary tree is reversed, which is necessary for the
decoding process.

Decode the Data and Binary Tree: The encoded data and the reversed Huffman binary tree are used
to decode the original data.

Convert Data from Bytes to Bits: The decoded data, which was stored in bytes, is converted back
to bits.

Remove the Padding: Any padding that was added during the encoding process is removed.
Decode the data using the reverse Huffman Binary Tree: The final step is to use the reversed
Huffman binary tree to decode the data, recovering the original uncompressed data.

Merge the decoded data: The decoded data is merged back into a single output.

Save Merged Decode Data to One File: The final, decompressed data is saved to a single output
file.

End: This is the completion of the decoding process.
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The Figure (1-15) shows the Huffman Coding Decompression algorithm

Split Encoded data from
Encoded Tree in the File

Rewverse The Huffman Decode The Data and
Binary Tree Binary Tree

Convert Data From Bytes
to Bits

Remove the Padding

l

Decode the data using the
Merge the decoded data reverse Huffman Binary

Tree
I

Save Merged decode data
to COne File

Figure 1-15: Huffman Decompression flowchart

LZW Module

LZW Compression algorithm process can be listed in the next steps:

Start: This is the beginning of the compression process.

Input First Byte: The first byte of the input data is stored in a string.

Input Next Byte: The next byte of the input data is stored in a character variable.

Is the Char in Dictionary? The algorithm checks if the combination of the string and the current
character is present in the dictionary.

False: If the combination is not in the dictionary, a new key-value entry is added to the dictionary,
and the code for the string is generated.

True: If the combination is in the dictionary, the string is updated by appending the current
character.

String = String + Char: The string is updated by concatenating the current character.
File Not End: The algorithm checks if there are more bytes to be processed in the input file.
True: If there are more bytes, the process continues from step 3.

False: If the end of the file is reached, the process ends.
End: The compression process is completed.
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The Figure (1-16) shows the LZW Coding Compression algorithm flowchart.

Input First Byte
Store in String

l

Input Mext byte
Store in Char

Add key entry in False

Dictionary for j«— Ge;erag:a _Code String + Char
String + Char or =tring in Dictionary

String = Char
—

Input First Byte
Store in String

Figure 1-16: LZW Compression Algorithm Flowchart

Is

String = String +
Char

True

File Mot End

LZW Decompression algorithm process can be listed in the next steps:

Start: This is the beginning of the decompression process.

Input First Code and Store in O Code: The first code from the compressed data is read and stored
in the O Code variable.

Output the O Code Translation: The translation of the O Code is output as the decompressed data.
Input the Next Code, store it in N Code: The next code from the compressed data is read and
stored in the N Code variable.

Is N Code in Dictionary: The algorithm checks if the N Code is present in the dictionary.

False: If the N Code is not in the dictionary, the string is set to the translation of the O Code, and a
new dictionary entry is added for O Code + the first character of the string.

True: If the N Code is in the dictionary, the string is set to the translation of the N Code.

Output String: The decompressed string is output.

Char = First Character in String: The first character of the output string is extracted.

Add New Key Entry for O Code + Char in Dictionary: A new dictionary entry is added for the
combination of the O Code and the extracted character.

O Code = N Code: The O Code is updated to the current N Code.

Is There Codes to Input: The algorithm checks if there are more codes to be processed from the
compressed data.

True: If there are more codes, the process continues from step 4.

False: If there are no more codes, the decompression process ends.

End: The decompression process is completed.
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The Figure (1-16) shows the LZW Coding Decompression algorithm flowchart.

Input First code Cutput the
and store in OCode
OCode Translation

v

input the next
code store it in
MNCode

False True
String = Is String =
translation of NCode Translation of
QOCode in Dictionary NCode
Siring = String +
Char l
Char = first
Output String character in
string
add new key entry
OCode = NCod for OCode + Char in
Dictionary
True False

Is There
Codes to
Input

Figure 1-17: LZW Decompression Algorithm Flowchart

From the Flowcharts the Variables “O Code” and “N Code” (old-code and new-code) hold the 8-
bit codes from the compressed file and “Char” variable holds a single byte, “String” variable
holds a sequence of bytes.

Audio Module

The need for change in sampling rate was seen in the motivating digital audio to reduce the size
of the audio files, after discrete-time processing reduce the sampling rate by sub-sampling or
decimation or down-sampling. This means keeping only every M-th sample of the discrete-time
process. This is usually represented as shown in next Figure.

x[n] y[n] = x[Mn]

Were Down-sampled signal:

And Were:

M is Sampling Factor.

The downs sampling algorithm process can be listed in the next steps:

Start: This is the beginning of the process.

Read WAV File: The first step is to read in a WAV audio file.

Store Audio Data: The audio data from the WAV file is stored for further processing.
Store Sampling Rate: The sampling rate of the audio file is also stored.
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Set the Down Sampling Factor: This step sets the down sampling factor, which is used to reduce
the sampling rate of the audio data.

Setting The Threes holding Value: A threes holding value is set, which is used in a later step.
Calculate ABS Fourier Transform: The absolute value of the Fourier transform of the audio data is
calculated.

Downs ample Audio Data: The audio data downs ample by the factor set earlier, reducing the
sampling rate.

Apply Anti-Aliasing Filter: An anti-aliasing filter is applied to the audio data to prevent aliasing
artifacts.

Apply IFFT: An inverse Fast Fourier Transform (IFFT) is applied to the downs ample audio data.
Save Audio File as WAV: Finally, the processed and compressed audio data is saved as a new
WAV file.

The Figure (1-18) shows the Flowchart for the Downs sampling Algorithm.

Store Audio Datal

Store Sampling
Read WAV File Rate

Store Sampling
Rate

Set the
Downsampling
Factor

Setting The . .
Epsilon 'y
Downsample Audio Apply Anti-Aliasing
Data ] Filter Apply IFFT
Save Audio File as
WA

Figure 1-18: Audio Downsampling Algorithm Flowchart

Property: Down-sampling by M or DM (+) is a linear, periodically time-varying operator with
period M.
Since:

Dy (azq[n] = Bxs[n]) = ax[Mn] + Bzy[Mn] = aDys (x1[n]) + 3Dy (22[n])

clearly DM () is a linear operator. It has a periodically time-varying property because if a
sequence is shifted by M, its down-sampled version is shifted by 1. More precisely

Dy (0[n — kM]) = dn— k|, kecZ
Dy (8[n — kM —€]) = 0, (=1,2...,M—1.

Hence, if y[n] = Dy (z[n]), then Dy (x[n — kM]) = y[n — k.
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Therefore, for the down-sampling system the time-varying property implies that complex
sinusoids are no longer Eigen-functions. This can be seen from the following argument. Let

zn] = ™ = (~1)".

If we down-sample by a factor 2,
y[n] = z[2n] = ™" = 1 £ ¢ - z[n]
for any constant c. Hence the complex sinusoid is not an Eigen-function for the downs sampling

operator. Recall that for a linear time-invariant system, the complex exponential was an Eigen
function, i.e., if

LA{xz[n]} = Z hlm]x[n —m],

Then For

z[n] = el“om,
yln] =L {ej"“'“n} = H (/°) z[n]

y[n] was a scaled version of x[n] with scaling factor (H ejw0) which is a constant independent of
n. the time-invariant property is crucial for this to be true. This is because DM (:) is linear but not
time-invariant and does not have the complex exponential as an Eigen-sequence or Eigen-
function.

An important consideration is to understand what happens to the z-transform (or discrete-time
Fourier transform) when one down-samples a signal. To be specific, consider down-sampling by a
factor of 2 of a discrete-time signal with z-transform X(z). now define a new discrete-time
sequence x ' [n] with z-transform X’ (z) as

X"(Z) = ;[X( )+ X(—2)] = Z (k] z +%Zif[k](—l)_k2_k
k

- —Z{ m}
= Z T 2k -1)2

k:even k:odd

= Z z[2n]z "
n

Now, if
y[n] = x[2n],
Then

O = Sl = Sl = x () = 1 () + x (48]

n

Evaluating it on the unit C|rcle, if the ROC includes it, gives
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Y () = % [x (%) + X (e9%) ] = % X (%) +x (e12)].

Optical Fiber Module
The Proposed Optical Fiber system was design to be point to point network system as shown in
Figure (3-19)
Electronic Electronic
Network Node Network Node

. Optical Link .

Figure 1-19: optical fiber point to point system

Each electronic node contains at least one transceivers. depicts a transceiver with a directly
modulated light emitting diode or laser. For higher data rates it is common to use a laser with a
continuous output and an external optical modulator.

The Figure (1-20) Shows the inner components of the Electronic Node.

Optical Transceiver

Diode Laser/

Fanne
LED Optical

Electrical Output
. — T  Optical

. Input
Photodiode

s g o)

Figure 1-20: inner components of Electronic Node

Conclusion

The results obtained from the implementation and simulation of this prototype system demonstrate
that a high-performance system capable of compressing text files with an average compression ratio
of (1:47) has been successfully developed. This was achieved by utilizing two different compression
algorithms, which are suitable for different situations.

The average performance parameters for both Huffman Coding and LZW algorithms can be
calculated for comparison. The average parameter values are listed in -From this analysis, it is
noticed that the LZW algorithm achieved a higher compression ratio compared to Huffman Coding,
while the Huffman Coding algorithm used less memory space for the text compression.
Additionally, the LZW algorithm achieved a lower compression and decompression time, whereas
the Huffman Coding algorithm achieved a higher compression throughput.

Furthermore, the system was able to achieve a compression ratio of (1:10) for audio files, by the
down sampling algorithm using FFT. and a linear relationship between the down sampling factor
and the compression ratio was revealed, and it was observed that when the down sampling factor
exceeded 11, poor SNR, MSE, and PSNR values were experienced by the system, rendering

Vol 7, No.1, Jan - Jun. 2025 | OPEN ACCESS - Creative Commons CC Bn M

292




daan) Sl a Aaa
an Surman Journal for Science and Technology VoI"7 I\ljo?ﬁ:—j; 2'025

ISSN: Online (2790-5721) - Print (2790-5713)

sjst.scst.edu.ly Pages: 278 ~ 294

unusable audio. However, good SNR, MSE, and PSNR values were obtained when the down
sampling factor was between 3 and 10.
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