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Abstract:

The basic principles of this paper about the techniques that used to apply control on nonlinear systems. These
methods were applied to three different nonlinear examples in order to check the performance of these techniques.
These methods are Feedback Linearization, Sliding mode Control and Backstepping.
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Introduction:

The basic principles of this paper about the techniques that used to apply control on Nonlinear systems. These
methods were applied to three different Nonlinear examples in order to check the performance of these techniques.
These methods are Feedback Linearization, Sliding mode Control and Backstepping. Moreover, nonlinear dynamical
equations are difficult to solve, Nonlinear systems are commonly approximated by linear equations (linearization).
While this works well up to some accuracy and some range for the input values, but some interesting phenomena
such as solutions, chaos, and singularities are hidden by linearization. In addition, in follows that some aspects of the
dynamic behavior of a nonlinear system can appear to be counterintuitive, unpredictable or even chaotic.

1- First system differential equation and controller design:
The system differential Equation as follows: -
X1 = Xo + axqSinx;

5C2 = bxlxz +u

And the system following by:
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Z, ~ _ [*%2 + axysinx, —, ~_ [0
oo =" s g =[]
we need to find z = T(x) statisfying:
oo _ o, - o 7
@ Lg=o0 @ Lgzo @) T,=

Writing all conditions:

0Ty — _ or 9T [0] - o _ —
@ 2g=0-[5" 2l[l=0 - 52=0 > =1
aT, — aT, 9T, [0 T
(2) a—;g¢0—>[a—le a—é][1]¢0—> 2¢0 > Ty = Ty (x4, x3)
_ AT 7 _ [0Ty 9Ty][Xx2 + axisinx, Ty
B) T, = ot = lox, 7, [ bx,x, ] = (x2 + ax;sinx;)
From (1) let Ty = x4 ———> 2—2 =0 — — —— (Satisfies condition)
% _ [T omy)[x2 + axisinx;| Ty .
From (3) T, = = [6x1 axz] [ bx,x, ] = ox (x5 + axysinx;)
g% =1 - T, =(x; +ax;sinx;) - (Satisfies condition (2) & (3))
1

So all condition are true:

Z1 = X1
| - .
X, + axlslnxl Zy = X5 + ax,Sinx,

z=T(x) = [
Now we need to find x = T™1(z)

X1 =2

Zy = Xy + axqSinx; — zZp; = Xy + Az{Sinz; = X, = Z, — Az{Sinz;

x=T"(2) = [ZZ - azzllsinzl]

Verifying:

Z1 = X1 = Xy + ax1Sinx, = z, — az,5inz, + az,sinz; = z,

Zy, = Xp + axqSinx, + ax{CoSx{Xq

Zy = bxyx, + u + a(x, + ax,sinx;)sinx; + ax,cosxy(x, + ax,sinx;)

Zy = bx1X, + U + ax,sinx; + a’x;sin’x; + ax;x,cosx; + a’x¥sinx,cosx,
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zy, = bzy(2, — azysinz;) + u + a sinz,(z, — az,sinz;) + a?z,sin’z, + az,cosz,(z, — az,sinz,)
+ a?z?sinz,cosz,

Z, = bz zy — abz?sinz, + u + a z,sinz, — a®z,sin’z, + a®z,sin’z, + az,z, cosz, — a*z?sinz,cosz,
+ a?z?sinz,cosz,

%y = bz,z, — abzisinz, + a z,sinz, + az,z, cosz; + u

To design SFL controller that regulatesz — 0

u=—=[-f@) +v] v = —(kyzi+kz2;)

k; & k, have to selected to make the location for system poles in the left hand side

thus the system is state feed back linearizable.

By simulating the above controller with Malab at a =4 = 1 and b = b = 1.5. we get the response shown in Fig.1.
It’s clear from the result that the controller regulates the system states to zero effectively

Regulating the System States to Zero

2r T
X1
—— - X1
1.5
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Fig. 1. The feedback linearization controller regulates the system states to zero

By setting a = —1 and b = 2 in simulation with the same u and diffeomorphism. It is not possible to control the
system. We can notice that from figure (2).
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Regulating the System States to Zero

_____
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Fig.2. The feedback linearization controller does not regulates the system states to zero

Applying Sliding Mode Control Approach:
X1 = X + ax,Sinx;

By selecting x5 that stabilizes the origin x; = 0. This can be reached by assuming the Lyapunove candidate
function:

v, = %xlz for x%; = x, + ax;sinx;
U = X1%;
= %1 (xy + ax;sinx;)
= x1Xx, + ax?sinx; < x,x, +2x2
0<|al £2 and x, = —3x4
X, = 0 is GAS
v < x1(—=3x;) + 2x?
v, < —3x% + 2x?
v, < —x?

s =3x1 +x,
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§=3% +%, =3(x;+ax;sinx;) + bxyx, + u = 3x, + 3ax;sinx; + bxyx, + u
U = —3x, — 3x4Sinx; — X1X, + vV
$ = 3x, + 3ax;sinxy + bx;x, — 3x, — 3x1Sinx; — x1X, + v

—3xysinx;(a—1) + x1x,(b—1) + v

= |—3x;sinx;(a — 1) + x32,(b — 1)| < 3|xq| + 2|21 || %3]

< 1|3 + 212 )
v = —[1+ byl (3 + 2bDlsat )

Figures (3) and (4) shows the Matlab simulation of the time response and phase portrait for x; and x,

System States Versus Time
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s /\\
—
O N ——
~ -5 //
< Vg
o
> 10 — x1 at X(0) = [-2.5 2.5] [
——— x2 at X(0) = [-2.5 2.5]
15 —x1 at X(0)=[1 3]
———x2 at X(0) = [1 3]
— x1 at X(0) = [-1 -5]
-20 x2 at X(0) = [-1 -5]
——— x1 at X(0) = [6 6]
25 x2 at X(0) = [6 6]
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Fig.3. The system states response versus time with different initial condition
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Phase Portrait
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Fig.4. Displays the portrait for states X1 and X

2- Sliding Mode control for a Pendulum:

The Sliding Mode Control for a pendulum, whose suspension point is subjected to a time-varying, bounded,
horizontal acceleration, is given by

mlé + mg sind + klf = ; + mh(t)cos6

Where h is the horizontal acceleration, and T is the torque (control) input. Assume that g =9.81 and

09<1<11<, 05=<m<15 0<k=<0.2 lh(t)| <1
It is desired to stabilize the pendulum at =0 for arbitrary initial conditions 8(0) and € (0). And Designing a
continuous sliding mode feedback controller to achieve ultimate convergence of the states to

|8] < 0.01 and |8] < 0.01. And finally verifying the controller design with a simulation.

Let x;=10 x, =6

=6 = 6 b+ —T+ © cost
X, =6 = sin 2 ;- cos
g k 1 h(t)

L = — = — = — T = = —
et a l b — c —r u 403 ;
{ 5C1 = x2

X, = —a sinx; — bx, + cu + {(t)cosx;
Xy = —x1
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S = x1 + xz
S =21 + Xy, = Xy —asinx; —bx, + cu+ {(t)cosx; = (1 — b)x, — a sinx; + cu + {(t)cosx;

s=clu+ 6]
1
Assuming § = z [(1 = b)x, — asinxg + {(t)cosx,]

1-b
c

a
18] < |Z| x| + | < 16.186]x,| + 1.815]x,| + 1.111

€2

s
u = —[16.186|x;| + 1.815|x,| + 2]sat(g)

Figure (5) and (6) shows the Matlab simulation of the time response and phase portrait for x; and x, with different
initial value

System States Versus Time
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4 5 6 7 8 9 10
Time (Second)

-8

o
N
N
w

Fig.5. The system states response versus time with different initial condition
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Phase Portrait
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|
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Fig.6. Displays the portrait for states X1 and X

3- Back stepping of Wing Rock Regulation:

Aircraft wing rock is a limit cycling oscillation in the roll angle @ and the roll rate @ which can occur in high
performance aircraft with delta wings when flying at high angles of attack. See Figure (8) for further clarification.

Wing Rock

4 ~~
& N SSel Wind
_/ Roll v Direction

Static Data )
(Stablels L

\\\‘ ‘\
"’ \ ™ ¢
r

Static Data G
(Stable),

.......... Stable leap

\ (Energy Dissipation) 5

Dynamic }.-Iysmusis \,

Dynamic Hysteresis Y Unstable |nn!) \
{Clockwise : Unstable) \ (Energy Extraction) {Counter-clockwise \
N : Stable) AN
N *
(a) Wing rock build-up phase (b) Wing rock limit cycle phase (¢) Wing rock decay phase
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Fig.8. Wing rock build —up phase, limit cycle phase, and decay phase

A model of wing rock based on wind tunnel experiment is given by
O =—w?+ 0+ b B3+ u,0%0 + b, 60* + g6,
Parameter and constants for the model:

w? = —ciay P = €102 —C; by = ciaz Yy = ciay
bz = Clas 1 = 0.354 C, = 0.001

When the angle of attack v = 25, the values of the parameters a, to as are given in the following table:
V:the angle of attack and a: the values of the parameters

Table 1: Parameters for the coefficients in the wing rock model:
A\ aq a; as Ay as
25 -0.05686 0.03254 0.07334 | -0.3597 1.4681

The state space representation of the wing rock phenomenon is written, where g is a constant and §, is a force
applied on the wing by an actuator with linear dynamics given by :

. 1 1
6(1 = —;5a+;u

Let x; = @ - Rollangle x, = @ - Roll velocity — @ = Roll acceleration x5 = &,

The state space representation of the wing rock phenomenon is derived as follow:

X =0 =x,

Xy = 0 = —w?xy + WXy + byx3 + upxx, + byx x5 + gxs
X3 =084 = —%x3 +%u

y =X

Simulating the system in open loop = (u = 0) Initial conditions @(0) = —4 @(0) =08 =0

-2 =1.5
T=13 g =1

The simulation with initial conditions #(0) = —4 ,®(0) = 0, = 0 without control for states x1 versus x2 we
observe a limit cycle as shown in figure(9).
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Open Loop System X2 VS X1
0.15 ; ; ;

0.1

0.05

States X2

-0.05

-0.15

-3.5 -3 2.5 -2 -1.5 -1 -0.5 0 0.5 1
State X1

Fig.9. Open loop system state X1 versus X2

4- A backstopping controller Design and simulation for closed loop system:

A backstopping controller was designed for this system to regulate the states to zero, and simulating it by Matlab
software.

561 =X

.o )2 3 2 2

Xy = =W Xq + U1 X3 + b1X5 + Uy XXy + byxXx5 + gx3
. 1 1

X3 =—=x3+-u

3 T 3 T

Z1 = X1

Zy =Xy =%y
Z1 = X=X = (Zp +%;) <X = —kqz;
Z1 =2Zy — k124

1,

V= 521

Uy = 212y = 2123 — k1212

Zz=xZ
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Z3 = X3 =X
Zy = Xy —‘5(1
= —w?xy + pyx; + byX3 + ppxix, + byxyxs + g(z3 +¢;) —

1
_ 2 3 2 2 4
= E(w Xy — WXy — byXy — UpXTXy — byxy X5+ — kyzy — 24)

By substituting «, in Z,

.2 3 2 2 2 3 2 2 14
Zy = =Xy + Py Xz + D1X5 + pPaXixp + DXy X5 + gZzt w Xy — PiXy — byXg — pa XXy — byXy Xy +X— kpzp —
21 —%

Z, = gzz —kyz; — 24

v, :vl+§zz2

1‘72 = 131 + 2222 = Z1Zy — k]_ZlZ + 9Zy7Z3 — kzZZZ — 2Z1Zy
— 2 2
= —kyzi + gz,23 — k25

Z3 = X3 =%

1 +1 )
=——x3+-u—«&
T 3 T 2

Let u = T(%Xg +°C2_ k323 - gZZ)

Z3 = —k3z3 — gz,

1 1 1
V3 = 5212 +§ZZZ +§Z§

1}3 =21Z'1+22Z'2+Z3Z'3
=2,2, — k22 + 97,22 — k, 2% — 2,7, — k22% — 927,72
122 121 T gZzZ3 223 122 323 — 9Z3Z3

= —kyz? — k,z2 — kszZ - z* =0is GAS

- x*=0is GAS
1 ) 1 1 3 1 ) 1 ) 1. 1 1
K= —WXy — =Xy — =b1X5 — —paXTXy — —baX1X5 — —k1Z1 — —Kp2; ——24)
g 9 9
Z1=X1 , Z1=X1 =Xy , Zp =X
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Fig.10. Design and simulation for closed loop system

By using the controller designed by backstopping the system states regulated to zero as shown in the results in
fig.11.

Closed Loop System States Versus Time

System States x1 x3 x2
) N
— ]

0 100 200 300 400 500 600
Time (Second)

Fig.11. Closed loop system states versus time
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Conclusion:

According to the results we got from these papers, we found that the feedback linearization technique controls the
system only within the certain constrains. The open loop system states for Air craft wing rock form a limit cycle. By
designing backstopping controller, we successfully regulate the system states to zero. Also Sliding mode control
satisfy the required performance in both models.
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