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Abstract:

The basic principles of this paper are some techniques that used to apply control on
nonlinear systems. These methods were applied to three different nonlinear examples in order to
check the performance of these techniques. Moreover, this paper is to understand the concept of
the sliding mode control and there are three problems that we should solve for this paper first
Sliding Mode Control Warm-Up, second Sliding Mode control for the van der pol Equation (VDP),
and third MIMO control of two-link Planar Arm.

Keywords: Sliding mode control (SMC) . Van der pol Equation (VDP) . Multiple input, multiple
output (MIMO)
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1. Introduction:

The Nonlinear control is the part of control theory which deals with systems that
are nonlinear, time-variant, or both. Moreover, the control theory is an interdisciplinary branch of
engineering and mathematics that is concerned with the behavior of dynamical systems with
inputs, and how to modify the output by changes in the input using feedback, feed forward,
or signal filtering. Also, the system to be controlled is called the "plant” , and one way to make the
output of a system follow a desired reference signal is to compare the output of the plant to the
desired output, and provide feedback to the plant to modify the output to bring it closer to the
desired output. Therefore, in this paper to clarification the concept of the sliding mode control for
the Sliding Mode control Warm-Up, the Sliding Mode control for the van der pol Equation (VDP),
and the MIMO control of a Two-link Planar Arm

2. Sliding Mode Control Warm-Up

In control systems the sliding mode control Warm Up (SMC) is a nonlinear control
method that alters the dynamics of a nonlinear system by applying a discontinuous control
signal (or more rigorously, a set-valued control signal) that forces the system to "slide™ along
a cross-section of the system's normal behavior. And, the system differential equation and

controller design and the system differential equation as follows:-

X1 = X3 + axqsinx, & Xy = bxq1x, +u

Where x4 is the first variable and x, is the second variable and u is input, and sinx; is slip angle
for first variable. Also, a and b are unknown constants but we know that 0 <|a|<2 and 1<|b|<3
.In this experiment we will apply feedback linearization approach to check the system

convergence to zero; and the second approach sliding mode control will be applied as well.

Xy +axgsinx{] . _—, . [0
bxle ] ’ g(x) - [1]

In this part, we will deal with the system’s parameters a, b as unknown parameters @ and b.

fO) =

Also, nominal values will be plugged in for them to come up with a diffeomorphism and a
controller such that the system converges to zero. For the last two, the system parameters

will be changed to another nominal values to check if the controller still effective with system
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of not. Now to apply feedback linearization, we need to find a diffeomorphism such that the

system will be on chain of integral form.

We need to find z = T(x) statisfying:

Ty — aT, —

axg—O ) Egio and T2=Ef
We can write all conditions:
oM o [P 2T [0] 2 ory _ _
W Zg=o=[ 2[]]=0 = 2=0=>n="
ar, o 9] (0] ot _
(2) ax 9 0= GEZE P BN 0= dx, #0 = T, =Ta(x1,%2)
_ o7 _ [0 o] [X2 t ax,sinx;] _ Ty )
@) T=32f= |5 ol 7 bxx, ] = 5 (%2 + ax;sinx)
Ty —
Let’s choose that T; = x; = ﬁg =0 = Satisfies condition [1]
2
_ 0T _ [ﬂ ai] X, + ax,sinx; _on .
T, = o f= %, ox, bi,x, = (x; + axysinx;)
aT
# =1 = T, =(x, +axysinx;) = Satisfies condition [2] and [3]
1

So, now we need to satisfy the second condition.

g [O O

22 9 = |ox, 6x2] [(1)] = [ax; cos(xy) + asin(x;) 1] [0

J=1¢0
Then, we conclude that the system is state feedback linearizable.
To get the controller of the system, first, we have to get the diffeomorphism z = T(x) as follows:

z=T(x) = [ X1 ] Z1 =X

X, + ax,sinx, Zy = X + ax{Sinx
Here, we need to find x = T~ 1(z)
x1 == Zl

Zy = Xy + ax Sinx, = Z; = X, +az;Sinz; = X, = Zp — az1Sinz,

Then x =T7(2) willbe = [;Cﬂ =T ' (2) = [Zz _ aZzllsin Z1]

To design SFL controller that regulatesz = 0
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_ 621

o aZl o
Zi=—*X1+—*Xx
1 6x1 1 axz 2

Zl=1*x1+0*x2
Zq = X5 + axq sin(xq)

7, = z, — azy sin(zy) + az; sin(z;)

21 :ZZ

. 622 . 622 .

Zo =—% X +—*X
2 6x1 1 axZ 2

Z, = [ax, cos(x1) + asin(xy)] * [x, + ax; sin(x;)] + 1 * (bxyx, + u)

Z, = [ax;x, cos(x;) + a?x? cos(x;) * sin(x;) + ax, sin(x;) + a?x; sin(x;) * sin(x;)] +

bxix, +u
Z, = az,[z, — az; sin(z;)] cos(z;) + a?z% cos(z,) * sin(z;) +
a [z, — z; sin(z;)] sin(z,) + a? z; sin?(z;) + bz, [z, — az; sin(z;)] + u

Z, = az,Z, cos(zy) — a?z% sin(z,) * cos(z;) + a?z? cos(z,) * sin(z,) + az, sin(z;) —
a’z, sin?(z,) +a?z; sin?(z,) + bz,z, — abz? sin(z;) + u

Z, = az,2Z, cos(z,) + az, sin(z;) + bz,z, — abz? sin(z;) + u

Then the system will be:

Z1 = Zy
Z; = f(x) + g(x)u

From z,,we can get f(x), g(x), f(z), and g(2).
f(x) = ax;x, cos(x;) + a?x? cos(x;) * sin(x;) + ax, sin(x;) + a?x; sin(x;) * sin(x;) +

bxx,

glx) =1

Now, in x- coordinates, we let the controller be
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1

u= E[_f(x) + v]
u = —[ax;x, cos(x;) + a?x? cos(x;) * sin(x;) + ax, sin(x;) + a?x; sin(x;) * sin(x;)
+ bx x| +v
u=—[-f(2) +v]
9@

f(2) = az,z, cos(z,) + az, sin(z;) + bz,z, — abz? sin(z,)

g(z) =1

u = —[az,z, cos(z,) + az, sin(z,) + bz, z, — abz? sin(z;)] + v

For Simulation and results:

u=—=[-f@+v] = v=—(kztkez,)

k; & k; have to selected to make the location for system poles in the left hand side

thus the system is state feed back linearizable, wherea =1, b = 1.5,and v = —k;z; —

k,z, then the control law u that state-feedback linearizes the system will be:

u = [—2,2, cos(z;) — z, sin(z;) — 1.5 zyz, + 1.5 z¥ sin(z;) — kyz; — ky25]
Substituting u in z,, we get; z, = -k, 2z, — k, 2,
Where k, and k, are positive and should be chosen to place the system poles the LHP.

Then the state—space for the system will be:

=[5 LI
22 - —k1 —k2 Zy
By simulating the above controller with MATLAB at a =d = 1and b = b = 1.5. when we

simulate the controllerbya =42 =1and b = b = 1.5 or by nominal values of a and b that we

used for feedback linearizing controller we

will get the response shown in Figure (1). By using the MATLAB statement [k = place (A, B, P)]

to make the system stable, we can find the values of k4 and k.
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_[0 1
0 ol
So, P is the desired eigenvalues. Then, the values will be; k; = 2 and k, = 3. So, the obtained

where A B = [2] and P=[-1 -2]

state—space will be:
z1] _ 10 1711%4
[z’z] N [—2 —3] [Zz]
Here, from the above system we can make that the system becomes linear.

In the simulation part, we simulate the controller u by regulating the states to zero.

The system plant states

t X1

_—— x-2

States

=% ¥ ¥ ¥ + ¥

(0] 2 4 6 8 10 12 14 16 18 20
time (sec)

Figure (1) The feedback linearization controller regulates the system states to zero

Here, we can to see clear that both states x; and x, go to zero and suppose that @ # aand b # b ,
and that the valuesof aand barea = —1and b = 2. Using Matlab, plot the phase portrait of
the open-loop system (1), and identify the regions where the system exhibits different behaviors.
In this part, it was supposed that a # @ and b # b and by setting a=-1 and b=2 in using
MATLAB we will plot the phase portrait of the open-loop system (1), and the regions where the
system exhibits different behaviors, also we let u = 0 of the open-loop system. By simulating the
system, we get the phase portrait of the open-loop system using different initial conditions. The
Figure (2) and (3) show the results of the simulation for the states of the plant and the phase portrait

plot.
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Time response

_;P >x(1)=-1
— < (2)=1
o x(1)=2 |+
—_— < (2)=-4a
x(A)=-2
xX(2)=4 =
—— < (L)=1
— x(2):72
o 1 > s a s = 7 = s io
Time (sec)
Figure (2): The states vector x of the plant vs time.
Phase Portrait Plot
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Figure (3): The phase portrait of the system.

For Simulation and results:

The states vector x of the plant vs time sis shown in Figure (2), and the phase portrait of the

system is shown in Figure (3).

From Figure (2), we can see that the state x; goes to almost -3, and the state x, goes to zero. Also,

all trajectories in Figure (3) go to almost the points (-3.5, 0) and infinite.

Moreover, we will Explain why it is not possible anymore to use your controller from (a) when
a#aand b#b and guarantee convergence to zero. In particular pay attention to the

diffeomorphism and the controller itself. Verify by setting a = —1 and b = 2 in your simulation
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with the same u and diffeomorphism you got in (a). Hint: be sure touse @ = 1 and b = 1.5 to do
your coordinate transformation and to compute your controller, since you assume not to know the
real values for control design purposes! At the same time, use the real a =-1 and b = 2 values in

your simulation. From part (a), the controller in z-coordinates is:

1

u=-——[-f(2) +v]

9(2)

f(2) = az,z, cos(z;) + az, sin(z,) + bz,z, — abz? sin(z,)

g(2) =1
u = —[az,z, cos(z,) + az, sin(z,) + bz, z, — abz? sin(z;)] + v
In this section, we let a, b and v are the same values that we have found in Part (a). Therefore,

we puta = —1 and b = 2 in the simulation part.

u = [2,2, cos(z,) + z, sin(z;) — 22,2, — 2 zZ sin(z,) — 2z, — 32,]

For Simulation and results:

Figure (4) shows the states vector [x; x, ] with respect of time. Also, From Figure (4) we can
verify that t it is not possible any more to use the controller from (a) to get the states converged to
zero. By choosing a = —1 and b = 2 which the value of a is out of controller limit, the system
becomes impossible to use and make the states regulate to zero.

The system plant states

&_ P -

States

e e e e e e R R R e e e e R A e e A e R

(o] 2 4 6 8 10 12 14 16 18 20
Time (sec)

Figure (4): The states vector x of the system

B Vol. 03 No. 01, Dec 2021 | OPEN ACCESS - Creative Commons CC



ansu Surman Journal for Science and Technology | ISSN: E 2790-5721 P 2790-5713
Vol3, No.1, Dec_2021 , pp. 001 ~ 027

Instead of feedback linearization and we will now implement a sliding mode controller. The
approach is to figure out what x, should be if we considered it as an input to the x, equation so
that x; is driven to zero. Design a linear manifold of the form s = cx; + x, that does the job by
considering what happens when s = 0. Next, analyze the dynamics of s and determine a sliding

mode controller that drives s to zero (and consequently to zero).
X, = X, +ax,sinx,

X, = bxix, +u

The system is considered as:

% = f(x) + geou

= X, + axq sin(x;)

Where  f(x) = e and  G(x) = [‘1)]

The sliding mode controller which is s = c¢xq + x5, where c is a positive number.
Let’s check the sliding mode by forcing the following:

s=cxy+x,=0

Xy = —CXq

v(x) = %xf pd = x; =x, + ax;sinx,

The derivative of it will be:

v(x) = x1 * X4

v(x) = x; * [ x, + ax; sin(x;)]

v(x) = x; x, + ax? sin(x;)

v(x) = x; (—cx1) + ax? sin(x;)

v(x) = —cx? + ax? sin(x,)

As we know that where 0 < a < 2, and sin(x;) is between the values + 1 and — 1. Then,
v(x) < —cx? + |a|x?

where ¢ > 2, s0 we let = 4, and we will get:
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v(x) < —4x? + |a|x?

Here, we will use Lyapunov’s first method by assuming the following:

v(s) = ész

Also, the derivative of it will be:

v(s) =s*$§

v(s) = s * (c[ x, + axy sin(xy)] + bxyx, +u)

v(s) = sc[x, + axysin(xy)] + s (bxyx,) +su

v(s) < scl xy + axy sin(xy)] + s (bxyxy) +s(Du

For s, we cancel the known term on the right-hand side, we can do
u=—4x, +v

Then, dynamics § will be:

S = 4x, + 4ax; sin(xy) + bxy;x, —4x, + v

S = 4axy sin(xy) + bxyx, + v

Now, we let the part

|4ax; sin(x;) + bxyx;| < 4plx1| + o|xq|]|x,]

Where a < pand b < g, and let’s pick p = 1 and o = 2. then,
|4ax, sin(xy) + bxyx;| < B(x) = 4lxq| + 2[x1||xz]

Now, B (x) will to be:

B(x) = 4lx1| + 2|x1||x2| + k

where k > 0, so let’s make it k = 1. Then, v will be:

v = —B(x) * sgn(s)]

v = —[4]x1] + 2|x1|[x2| + 1] = sgn(s)]

Suppose that v in the controller, we will get that

B Vol. 03 No. 01, Dec 2021 | OPEN ACCESS - Creative Commons CC
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u=-4x, +v
u = —4x; — [4lx1] + 2|xq[|x2| + 1] * sgn(s)
We conclude that (s = 0) is GUAS, and it can be proved that s(t) = 0 in finite time.

Simulate the sliding mode design and the ‘sign’ function in Matlab, ode45 will take a very long

time to run. Instead, it is suggested that we used the approximation sgn(y) = sat(%)

Here, we will simulate the sliding mode design by sgn(y) ~ sat(y /&) function in MATLAB

1 if y>1
Where sat(y) = y if —1<y<1 ,astune ¢tounderstand the trade-off involved
-1 if y<-1

We use saturation function and let e = 0.01. The sliding mode controller using saturation

function is:

u = —4x, — [4|x1| + 2|xq||x;| + 1] * sat(s)

The simulation results will be shown in Figure (5) and (6) for the states of the plant and the
phase portrait plot.

Time response

4
2
\
n ——
O [ %-—
= —”‘- 4”—_
=, R ~
> ’l 7
= > P »”
< ’t’ ”
— [
= g ~ x(1)=2
U4
2 ¥ ’f ------- x(2)=0
_ /, x(1)=1
s | memm—— x(2)=-1
sl f x(1)=0
- rd x(2)=-2
‘:’ x(1)=0
s Vv L L L L L N x(2)=2
0.5 1 1.5 2 2.5 3 3.5 a

Time (sec)

Figure (5): The states vector x of the plan
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Phase Portrait Plot
i i i i i i i —e— (2,-2)
—e— (1,0)
2.2)
—— (-1,0)

) %
-4 <
-6
-8 ‘
L - 9 9 - - 9 9 9 ‘r_ -
-2.5 -2 -1.5 -1 -0.5 (0] 0.5 1 1.5 2 2.5

x(1)

Figure (6): The phase portrait of the plant.

By using MATLAB we have found Figure (5) and (6) show the designed controller of the system

regulates all states to zero.

3. Sliding Mode Control for the van der Pol Equation.

Sliding mode control is an area of increasing interest in control engineering , and this method
is proved to be robust against disturbances and discrepancies between the physical plant and its
mathematical model. However, it has mainly been applied to linear systems and its application to
nonlinear systems is based on utilizing linear sliding surfaces and the controlled van der Pol
system is given by:

X1= X3
Xy = —w? x4 + gw(1—p2x?)x,u

Wherew , £ and u are positive constants and u is the control input.

We will pick some values for w , £ and p and verify via simulation that for u = 1 and the van der

Pol system exhibits a stable limit cycle outside the surface x? +x3/w?=1/u? and that u =
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There exists an unstable limit cycle outside the same surface, and we can find that limit cycle or
oscillation is one of the most important phenomena that occur in dynamical systems and the system

oscillates when it has a nontrivial periodic solution

x(t+T)=x(t),vt >0 For some T > 0. Also, for u =1 this is the standard van der Pol oscillator
which is known to have a stable limit cycle. And, the fact that the limit cycle is outside a circle of

radius by 1/u in the plane (x; , x2/w) can be shown by transforming the Equation into polar

coordinates.

The surface x? + x2 /w? = 1/u? is re-written as:

2
x 1
~t+xi=—
w u

We letthe valuesw =1, e =1, andu = 1.

x5 +xf=1

when u = 1, the system will be:

561 = xZ
X, = —x1 + (1 —x)x,

Here we will shows the phase portrait plot when u = 1 in Figures (7)

Phase Portrait Plot
a T

—_— 2,-2)

——©— The surface

3 -2,2) \

-3

-4t = L L = = = L L = L
-2.5 -2 -1.5 -1 -0.5 o 0.5 1 1.5 2 2.5
x(1)

Figure (7): The phase portrait of the plant when u = 1
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From Figure (7), the conclusion is that this limit cycle is stable outside the surface x5 + x3/w? =
1/u? . Since that, all trajectories on this limit cycle must go to the outside. Therefore, the stable
limit must be outside the circle.
When the control input u = —1, the system will be:
X1 = Xy
Xy = —x1 — (1= xD)x,

The simulation result of the phase portrait plot when u = —1 is shown in Figure (8).

x 10°° Phase Portrait Plot
Of 0 0 i i T e ——
M " —_—(2,-2)

-2

-4

-6

-10 ///é/
-12

*-

-14°t : > > = £ £ L E a
-16 -14 -12 -10 -8 -6 -4 -2 o) 2
x(1)

Figure (8): The phase portrait of the plant when u = —1

From Figure (8), we can conclude that the existence of the unstable limit cycle by reversing time

and scaling the states, so it is unstable limit cycle outside the surface x3 + x3/w? = 1/u?.

Now we will define the sliding manifold s = x3+x%/w? — 12, where r < 1/u and we will show
that if restrict the motion of the system to the surface s = 0, and that’s we force s(t) = 0
Then the resulting behavior is that of the linear harmonic oscillator

X1=x, and  x,= —w?x, which exhibits a sinusoidal oscillation of frequency w and
amplitude r.

We can write dynamics of the manifold:
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x1= b )
Xy = —w? x1 + gw(1—p?x%)x,U

2 .
s=x2+2 12 = §=2x% %% 2
1t 1%1 w2

We let r = 0.6, and the sliding manifold is:

2

s=x12+%—r2 = s=xi+x2-(05)?2=0

Hence, we can found the dynamics of the sliding manifold:

S_as
T ox

S = 2x1561 + 2x2562
§=2x1%5 + 2%,(—x; + (1 — x3)x, u)
$=2x1xy — 2x1%, + 2(1 — x3)x2 u

s=2(1—-x3x3u

s(t) =0=s(t) =0 = u(t) =0 Then the resulting behavior the linear harmonic oscillator
from the original Equation for system when the input zero u(t) = 0 we can get the state equation

reduces to a harmonic oscillator:

X1=x, and Xy = —w? x; +so(l-pixdxu = X= —wix,

In this part we will designing a sliding mode controller that driver or leads all trajectories whose
initial is within the region {x € R?:|x,| 1/u } to the manifold s = 0 and then has the states slide on
the manifold towards the origin. Also, we will simulate the controller and verify that it’s able to

regulate the state to zero.
V(s) = %52

V(s)=ss=s52(1—x¥)x?u

When we make s # 0, we have to let the control input is u = —sgn(s). So, it will be:
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s$ = 2(1 — x?)x3 = s = sgn(s)
s$ = 2(1 —x?)x2 « |s|

The simulation results with different initial conditions will be:

Time response
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Figure (9): The states vector x of the plant.
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Figure (10): The phase portrait of the plant.
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From the Figures (9) and (10), we can show that when x, = 0, there will be no trajectory shown.

2
Also, we conclude that all trajectories in Figure (10) reach the sliding manifold s = x3 + % —

re.

4. MIMO Control of a Two-Link Planar Arm.

The Multiple input, multiple output (MIMO) systems describe processes with more than
one input and more than one output which require multiple control loops and Single variable
input or single variable Output (SISO) control schemes are just one type of control scheme that
engineers in industry use to control their process. In this part, we will consist of two links and
the first one mounted on a rigid base by means of a frictionless hinge and the second mounted

at the end of link one. The joint axes z, and z; and we establish the base frame X,y,z, as the
work space frame, which means the arm moves within the x — y plane. The inputs to the system

are always the torques 7, and r, applied at the joints.

Two - link planar manipulator.
Yo

v Ty

1Y
700\

A dynamic model of this system can be derived using Lagrangian equations and is given by

Hqyq H12] 9“1 —ﬁez —h6; —.he.z 91 91 (31
St ) S+ = where
Hy, Hy| |6, ho, 0 6, [gz] [772]

Hy, =1+ 1, +ml 2 +m[1% +17_, +2l1_, cos(6,)],

_ 2
H22 - I2 +m2|02 '
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H, =H, =1, +m,[l_? -+l cos(&,)],
h=m,l1_,sin(é,),

g, =mJl,gcos(8) +m,g[l’,, cos(d, +8,) +1,cos(8,)],
g, =m,l_,gcos(é, +6,)

In this part, we use the following parameter values m, =1.0kg , mass of link one m, =1.0kg , mass
of link two |, =1.0m length of link one 1, =1.0m, length of link two |, = 0.5m, distance from the

joint of link one to its center of gravity 1_,, = 0.5m, distance from the joint of link two to its

c2g
center of gravity 1, =0.2kgm* lengthwise centroid inertia of link one I, =0.2kgm?, lengthwise

centroidal inertia of link two and g =9.804m/s?, acceleration of gravity.

we will do joint space MIMO control of the arm, where the inputs are the two torques and the

outputs are the joint angles 6, and d,. Write a MIMO state space representation

of the system dynamics. Then design the MIMO state feedback controllers (t; and t, ) for
this system that regulate all the states to zero, and simulate the closed loop system for the

initial conditions 64 (0) ==, 6,(0) = 0, 82(0) =— =, 6,(0) = 0 ,we will to plot the controllers
and all the states versus time, and provide an interpretation of the plot.

[Hu le] 0“1 + —’iez —h01—'h0'2 91 + gl]:[rl] where
Hy; Hyl |6, hé, 0 6, 921 Itz

Hy,=1,+1,+ml 2 +m[1% +17_, +2l1, cos(6,)],
H,,=1,+m,l_?,

H, =H, =1,+m,[l_? -+l cos(&,)],
h=m,l1_,sin(é,),

g, =mJl,gcos(8) +m,g[l’,, cos(6, +8,) +1,cos(8)],
g, =m,l_,gcos(é, +6,)

Hllé + leé'z —_ he.zél - he'le.z - hezz + 91 = Tl
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H,.0 + H,,6, + h9'12 +09,=1,

91 H1292 9291 +L9192 +%622_:_111+I:I[_111
b, = ”“9——%2-—+2—
2 Hpp 1 Hzz  Hzz
4 _ _ Haa| Haa 92 T2 h 4 4 h 44 h 52 91 T1
= — S gz 4 Tz 2 = — g2 L1
61 Hp; [ Hp; 9 Hp; 91 Hp; + Hzp Hyg 9291 + Hii 9192 + Hyg 92 Hyy  Hig
We will define that:
M _ { Hll H12 }_1 |:_h€2 _hgl - h92:|
H21 H22 hel O

And define that:

a, =6
q, =065
ds; =6,
A, = 6,

Then the state space representation of the system will be:

@] [0 0 1 0 g 0 00

G| [0 0 0 L |le|,| o |, 00 F}
G| [0 0 M@LY) M@®2)| g | [G@Y | | Hinv@Ll) Hinv2) ||z,
g, [0 0 M2D) M@22)]lq, | |G@2D]| |Hinv21 Hinv,2)

Then we can start to design our control torque input. Note that we have to control g1 and g2

independently, so that we have decoupled the 2 inputs.

Than we will define that:

21 U, .
=r=Hu=H where, Hinv*H=lI
7 U,
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And let that:

u = -M (111)q3 -M (11 2)q4 _G(Ll) - k11 0,— k12q3
=-M (2,1)q3 -M (21 2)q4 —G(Z,l) - k21 qz - k22q4

91=

. H?,0 hHip H T,H T
6, =22t 4 712 2y 921z T2z +—9291+—9192 +—+—92 — gL
Hy1Hp,  HppHipg Hy1Hy2  HigHiz  Hip Hyp  Hig Hyy  Hig
. Hq1H: hH . H H h . h K T
912 11222[ 12 12 9212 12 T2+2—9291++—922 _£+_1]
Hy1Hp2—Hi, LHp2Hyq Hi1Hzp Hi1Hzp Hiq Hiq Hyy  Hig
. .. .0
0 = —H11H22—H1 [h91 Hiy + g,Hi; — HipT, + 2h0,60,H,, + hO3Hy; — g1Hyp + H12T1]
6, =—12__(hf? + ho2 + g, +2h6,60, + 1, — 1
1= W1ty -HE, ( 1 2 7911792 1U2 1 2)
;3 __Ha T2
g — e (ng2 + ho2 —g, + g, + 216,60, + T, — T ]——0 g2 4 T2
2 Hyy H11H22_H12( 1 2 ~91 1T 92 102 1 2) Hy, 1 sz Hyy
.. H2 . . .. o g2 Ty
b, =———102 __[ng2 4 hf2 —g, + g, + 2h6,6, + 7, — 7, — =02 — L 4 2
2 sz[H11H22_Hf2] [ 1 27917 92 172 1 2] Hyp 1 Hzz  Hpp
01
o Hy1Hpp 29 1o s s
6, = —22_ [hO% + h0Z —g, + g, + 216,60, + T, — 1,
Hy1Hz,—Hy,
9.2 = 92
. H2 h62 = hoz 210.6, T T ho T
G, =——->22 2Ly 91 4 92 4 PnR, 1 Rl T g2 924 T2
[Hi1Haz—HZ,| |Haz  Hpz  Haz o Hpp Hp; Hp;  Hpp Hpp Hp;  Hpp
X1 = 01 y xz = 91 y X3 = 92 y x4, = 02
561 == xz
Hq,
XZ - [hxz + hx4 gl + gz + thZX4, + Tl - Tz]
Hy1Hpp—HE,
X3 == x4
. H} hx?  hx? 2hxyx T T h T
x4:_+22[_2+_4_ _|___|_ S2ma L 2 __x%_g_z 2
[Hi1Hap—HZ,| |Haz  Haz  Hzz  Hap Hpp Hpz  Hpz Hap Hp;  Hpp
g1=61 , g1=06;
. Hiy .. H H
g, = 6 —(h@ + ho2 + + 2h0,0 +#T—#T)
g1 1 Hy1Hpp—HE, 1 27917 92 172 Hy1Hpp—H7, 1 Hy1Hpp—HZ, 2

g2 =6, and g2 = 92
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92 | 2h0:0:) h gy g2 1 [__ Hi

g =0, = ———12 h_Hf + h_@f _ 91 +
2 — Y2 —
HyqHpp—HE, | Haz Hzz  Hzz  Hpp Hyy |Hap 1 Hzz  Hpp Hy1Hpp—HE,

Fl(X) = m (h91 + h62 —g1+ 9, + 2h6192)
2 ho2  ho? ho,6,| n -
Fz(x)z—%—l héi _ 91 ﬂ_{_g_glz_g_z
Hy1Hz2—Hi, |H22  Hzz  Hzz  Hpp Hp; | Hzz Hp;
Hyp, Hyp
e IR YU S
g1(x) HiHyy—HZ, U1 g2(x) HysHyy—HZ, L2
(1 _ Hypp _ HZ,
g3(x) = [(sz Hy1Hyp—HZ, + 1) Tl] o ga(0) = [HZZ[HHHZZ—HIZZ]TZ]

. TA® ®) GO [T 0 [6® 8001 ([LG)
91‘[1%&) +[§§(ﬁ) ﬁié)][l - é]—[gié) gi(i) ‘([fl(i)]”)

vy = —k191 — ka1 = 2%, — 3x;
UZ = _klgz - ngZ = 24’x3 - 1OX4

iy

g»
u=—=2 v 4 v
1 91 L9194-9293 ————(93f1 —gsv1 —difa + 91 — PR

U= [glg4 9300 (93fi —93v1 — g1/ t 91772]

lell _ 1 HZZ _H21] I2h9102 + hezz - gl + Tll

6, HiyHoo—H? H21 Hyy —hb? — g, + 1,
6, _ 1 H22(2h3192 +h6% — g, + T1) — Hyy (—h0Z — g5 + 1)
6,] HuHz=H? | ( —H21(2h6’192 +h6Z — g, + Tl) + Hyy (h6f — g, +12)

6, = m (2n0,0, + hOZ — g1 +14) — W (—hO% — g, + 15)
X = @ (2hxpxs + hxg — gy +uy) — m (=hx3 — g, + up)
92 = m (2h9192 + h@z g1+ Tl) — m ( h91 9> + TZ)
X4 = m (2hxzxs + hxf — gy +uy) — m (=hx3 — g +up)
Y1=X = V275X
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Hy Hy, — H? = 0.405 —1.1125 cos 8, — 0.25 cos 62
Hy,H,, — H? =0.405 —1.1125 cos x3 — 0.25 cos x2

x1:91 y x2=91 y x3:62 y X4:éz
Vi =% =% > V1=X%
V2 = X3 = Xy > V=X
[ Hj; Hjq
— 22 (Qhxyxy + hx? — 2L (-
371] ' |HiHa — B2 (2hxzx4 Xi—91) — H,,H,, — H? (=hx — 92)]
Vol 7| —Ha Hiy J
— 20 Qhxyxa+h +—  (—hak-—
'H,, H,, — H? (2hx;x4 X5 —g1) H,,H,, — H? (—hx3 — g2)
[ Hjz _ Hz,
Hy1Hp—H? Hy1Hpp—H? [ul]
_ Hz, Hiy U,

Hy1Hpy—H? Hy1Hpy—H?

(2hHypxpx4 + szhx4 Hy,09, + H21hx§ + H3192)

[ul] _ 1‘1111‘122—1‘12

) V1]
Kiis Ki, 0 O ] V1

| 0 0 K33 Ka4 Y2
Y |
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Figure (11): Angular velocity [rad/s]
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Figure (12): input u; and u,

Figure (13): Plot x (1,1), X(1,2) and y1(1), y2(1)

Now we want to control the end-effector of the arm to generate a path in x—y plan. The output

s are the position coordinates x and y ( z is always zero ) of the end-effector. Let

Be a smooth and invertible mapping between the joint vector 8 =[6,,6,]" € Q and the workspace
variables. The space Q is a suitably chosen rage of angles for 6, and 6,, then X =[X,,Y,]" is the
position of the end-effector on the (X, —Y,) plane. In other words X = f (&), so that the position

of the end-effector can be computed from the two joint angles, and mapping f is known as the
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arm’s forward kinematics, and it can lead us directly into so-called work space control, which
means that we will perform instead of joint space control. Also, the exists a relationship between
the vector of linear velocities of the end-effector X and the vector of velocities of joint variables @
given by X = J@ where J is as the Jacobian matrix, and the forward kinematic function , and we

will using trigonometry to show that the Jacobian is given by:

j- -1, sin(g,) -1,sin(6,+6,) —l,sin(&, +6,)
l, cos(&) +1,cos(6, +6,) |,cos(é,+86,)

Then, the derive the new MIMO state space representation of the system dynamics, where the
state vector is X instead of 6. We will design the MIMO state feedback controllers (7; and 1)

x=+2 (m)
{y = sin (:—;) (m)

And we should verify design with simulation for initial conditions@, = (0), 8; = (0), 8, =
0.2, 6, = (0). We will plot the control signals and all the states versus time, and demonstrate
an animation of the arm’s motion.

Here, we want to control the end-effector of the arm to generate a path in x—y plan. The output
s are the position coordinates x and y ( z is always zero ) of the end-effector.

x=1,cos0,+ 1, cos(0; +0,)
y =1l;sin0, + 1, sin(6, + 6,)
Let’s the position equation to find the velocity:
x =1;0,5in0, — 1,(6; + 6;) sin(0, + 0,)
y =13 01c080; — 1,(8; + ;) cos(8; + 6,)

[x] B [11 sin@, — l,sin (6; +6,) —1,(6, + 92)] 6,
vyl llycos0; —l,cos (6;+6;)  1,(6, +6,) 16,

X=Jj6 = 0=y'X
vy =l cosxqy + [ cos(xq+x3)
V1 = —liXq sinxg — I, (X + X3) sin(x; + x3) = —lix,sinx; — [,(x, + x,) sin(x; + x3)

yl = _lle sin x1 - lzxzsin(xl + X3) _ZZX4Sin(.X1 + X3)
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y= =1 (xy%q1 cosxq + X5 sinxg) — L[x, (%1 + X3)cos(xg + x3) + Xysin(x; + x3)] —

o[ (51 +%3) cos(xq + x3) + X4 sin(x; +x3)]

y = —1;x2(cos xq — Ly %, sinxy) — Lx3 cos(xg + x3) — lpxpx4 cos(xy + x3) — L%, sin(x; + x3) —

Iy x5%4 cos(xq + x3) — x5 cos(x; + x3) — L%, sin(xq + x3)
y = —l1x% cosx; — %, [—1; sinx; — Iy sin(xy,x3)]  — Lxy cos(xq + x3) — %, sin(x; + x3) —

21yx,x4 cos(xy + x3) — LxZ cos(x; + x3) — Ipx2 sin(x; + x3)

m( hxz g2+u2)—

(—hx5 — g, +up) —

—HZ (thZX4 + h.X'4 gl + ul)]

y, = —l; sinx [
Y1 1 1|y Hyy

} Hyp 2 _ —
I, sin(x; + x3) [—H11H22—H2 (thZX4 + hxj gt ul)] H11sz Ty

I, sin(x; + x3) [ 2 (2hxyxy + hxi — g, + ul)] —HZ( hxs — g, +uz) —

Hq sz— H11Hy
—1;x% cos x; — —l;x% cos(x; + x3) — 2lyx5x4 cos(x; + x3)
-1y sinx1Hy, -1, Sin(X1+X3)H22 ly Sin(X1+X3)H22 . . .
— 1 =  Thefirstequation = ¥y,
HyiHpp—H? HyHap—H? Hi1Hpp—H?

=  Thesecond equation = ¥y,

[ll sin X1H21 lz Sin(x1+x3)H21 lz Sin(X1+X3)H11]
HyiHpp—H? Hy Hap—H? HyHpp—H? 2

y =l sinx; + I, sin(x; + x3)
y = 3%, cosxy + 1, (%1 + %3) cos(xq + x3)
y =1 x5 cosxq + x5 cos(xq41x3) + 15 x4 cos(xq4X3)

y = l;[—x,%; sinx; + X, cosxq | + [[—x, sin(x; + x3) (%1 + X3) + X, cos(x; + x3)]

+ [ [—x4 sin(xy + x3) (% + X3) + %4 cos(xy + x3)]

y =1; [-x2sinx; + %, cosx;] + l[—x, sin(x; + x3) (%, + x,) + %, cos(x; + x3)] +

I[—x4 sin(xq + x3) (x5 + x4) + %4 cos(x; + x3)]

y = —l; x3sinx; + 1%, cosx; — I, sin(x; + x3) (x5 + x4) + L%, cos(x; + x3) — Lyx, sin(x; +

x3)(xy + x4) + ;x4 cos(xq + x3)
y'=x,[l; cos(xy) + I, cos(xy + x3) + 1,x4 cos(x; + x3)]

yz = _ll xZZ sin X1 + ll.).Cz CoOS Xy — lz Sin(x1 + x3)(x2 + x4,) + lszz COS(x1 + x3) - lzX4 Sin(xl +

x3) (%o + x4) + L%, cos(xy + x3)
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y, = —l; x5 sinx; + 1%, cosx; — I, x3sin(x; + x3) — lyxg sin(x; + x3) + [p%, cos(x; + x3) —

x4 sin(x; + x3) — L xZsin(x; + x3) + [%, cos(x; + x3)

Hy»
2
Hy11H—H

Hy1

(ZhX2X4 + hxﬁ — gl + ul) - m

y, = —l; x% sinx; + [;%, cosx; [ (—hx% —-g,+

uz)] — I, x2sin(x; + x3) — lpx4 sin(x; + x3) + I cos(x; + x3) [# (2hxyx4 + hx — g, +

H . .
21_H2 (—hx% —-9g,+ uz)] — Iy xyx, sin(xg + x3) — I, x2sin(x; + x3) + I, cos(x; +

ul) B H11H)

__Hun o pa2_ Hiq 2
X3)[ H11sz—H2( hxs — g, + up) +H11H22_H2( hxs — g, +u2)]

l1 cosx1H I, cos(xq+x3)H I, sin(x1+x3)H. . . .
[1 1Hyy 4 Lpcos(eytXa)yy _ Ly Sin(xy +is) “] Uy > The first equation =y,

Hy1Hpy—H? Hy1Hpy—H? Hy1Hpp—H?

[ ll COSX1H21 lz COS(X1+X3)H21 lz COS(X1+X3)H11

PR TR TR ]uz =  Thesecond equation = ¥y,

5. Conclusions:

According to the results we got from this paper we found that the feedback linearization
technique controls the system only within the certain constrains. Also, we have found the sliding
manifold and we restrict the motion of the system to the surface s = 0. And, we have simulated
the controller to regulate the state to zero.in third part, which means MIMO control of a Two-Link
Planar Arm. In the analysis, nonlinear closed-loop system is assumed to have been designed and it
1s necessary to determine the characteristic of the system’s behavior. In the design it is given a
nonlinear plant to be controlled and some specifications of closed-loop system meets the desired
characteristics. When a linear controller is used to control robot motion, it neglects the inherent
nonlinear forces associated with the motion of the robot links. The
Controller’s accuracy thus quickly degrades as the speed of motion increases, because many of the
dynamic forces, such as Coriolis, centripetal forces, vary as square of the speed. However, in
control systems there are much nonlinearity whose discontinuous nature does not allow linear

approximation (friction, saturation, dead-zone, hysteresis and backlash).
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