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 الملخص

باستخدام وحدة التحكم الكلاسيكية  (PMBLDC) نمذجة ومحاكاة لمحرك التيار المستمر بدون فرشالأداء و، تحليل  ه الورقة البحثيةفي هذ
 والمراقب الخطي الرباعي الخطي (LQR)ووحدات التحكم المثلى )المنظم التربيعي الخطي (PIDالمتحكم التناسبي التفاضلي التكاملي  )

(LQG)  ر تتزايد تطبيقات محرك التيا حيثالضوضاء.أو تخميد الاضطراب وقمع وتضعيف على أساس مرشح كالمان( لتوهين مستندة
من أجل الحصول على الاستخدام المناسب لهذه المحركات عليه م. يومًا بعد يو (PMBLDC) المغناطيس الدائمذو المستمر عديم الفرشاة 

 والتحكم فيها بشكل فعال ، من المهم أن يكون لديك نمذجة رياضية مناسبة لهذه المحركات. وبالمثل ، فإن التحكم الفعال في هذه المحركات
كلا الجانبين المهمين. تم اشتقاق نموذج رياضي لتمثيل ضروري أيضًا للتطبيق الناجح للأجهزة عبر مجالات متعددة. تتناول هذه الورقة 

لدراسة الاستقرار والأداء. من أجل الحفاظ على الاستقرار  (PMBLDC) دائمالمغناطيس ذو البدون فرشاة  مستمرنموذج محرك تيار 
تقديم  ة المثلى في هذا البحث. تموتحقيق أفضل أداء عن طريق تقليل توهين الاضطراب وقمع الضوضاء ، تم تطوير أدوات التحكم الثلاث

للتحكم في محرك التيار  MATLAB باستخدام برنامج PID  الكلاسيكية محاكاة أداء النظام لهذه وحدات التحكم المثلى مع وحدة التحكم
ة ذلك ذي المغناطيس الدائم من أجل تخفيف الاضطراب وقمع الضوضاء .. وأظهرت نتائج المحاكا (PMBLDC) المستمر بدون فرش

مقارنة أداء ، يوفر أفضل  PID  الكلاسيكية على مرشح كالمان مع وحدة التحكمالمستند  Linear Quadratic Gaussian (LQG) و
 .PID مع وحدة التحكم كالمان  ومرشح PID مع وحدة التحكم (LQR) ، والمنظم الخطي التربيعي PID بوحدة التحكم

 
Abstract 
  In this paper, modeling, simulation and performance analysis of the permanent magnet brushless 
direct current (PMBLDC) motor using classical controller (PID Controller) and optimal controllers ( 
Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG) optimal Controllers Based on 
Kalman Filter) for disturbance attenuation and noise suppression is presented. The applications of the 
permanent magnet brushless direct current (PMBLDC) motor are increasing day by day. In order to have 
proper utilization of these motors and to control them effectively it is important to have proper 
mathematical modeling of these motors. Similarly effective control these motors are also essential to have 
successful application of the devices across multiple domains. This paper handles both these important 
aspects. A mathematical model has been derived to represent permanent magnet brushless direct current 
(PMBLDC) motor model to study the stability and performance. In order to maintain the stability and to 
achieve the best performance by reducing disturbance attenuation and noise suppression, the three optimal 
controllers are developed in this paper. the system performance simulation of these optimal controllers 
with PID controller is presented using MATLAB program to control the modeled permanent magnet 
brushless direct current (PMBLDC) motor for disturbance attenuation and noise suppression.. The 
simulation results show that and Linear Quadratic Gaussian (LQG) Based on Kalman Filter with PID 
controller  provides best as compared to PID controller, Linear Quadratic Regulator (LQR) with PID 
controller and Kalman Filter with PID controller.   
 
Keyword: Permanent Magnet Brushless Direct Current (PMBLDC) motor, PID Controller, Linear Quadratic Regulator (LQR), 

Linear Quadratic Gaussian (LQG), Integral Linear Quadratic Regulator , MATLAB/Simulink etc. 

 

 

1. Introduction 

     Conventional DC motors have many attractive properties such as high efficiency and 

linear torque-speed characteristics. The control of DC motors is also simple and does not require 

complex hardware. However, the main drawback of the DC motor is the need of periodic 

maintenance. The brushes of the mechanical commutator eventually wear out and need to be 

replaced. The mechanical commutator has other undesirable effect such as sparks, acoustic noise 

and carbon particles coming from the brushes. Permanent magnet brushless direct current 
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(PMBLDC) motors can in many cases replace conventional DC motors. Despite the name, 

PMBLDC motors are actually a type of permanent magnet synchronous motors. They are driven 

by DC voltage but current commutation is done by solid state switches. The commutation instants 

are determined by the rotor position and the position of the rotor is detected either by position 

sensors or by sensorless techniques. PMBLDC motors have many advantages over conventional 

DC motors. A few of these are [1-2]: Long operating life, high dynamic response, high efficiency, 

better speed vs. torque characteristics, noiseless operation, higher speed range and higher torque-

weight ratio. PMBLDC motors are available in many different power ratings, from very small 

motors as used in hard disk drives to large motors used in electric vehicles. Three-phase motors 

are most common but two-phase motors are also found in many application. The purpose of this 

paper is to build a simple, accurate and fast running Matlab model of a permanent magnet brushless 

direct current (PMBLDC) motor using Linear Quadratic Regulator (LQR) and Linear Quadratic 

Gaussian (LQG) optimal Controllers Based on Kalman Filter with PID controller for disturbance 

attenuation and noise suppression which  will lead to an improvement in the transient and steady 

state response. This paper is organized as follows. Mathematical modeling of the three-phase 

permanent magnet brushless direct current (PMBLDC) motor is given in Sec. II. Optimal control 

strategies are given in Sec. III.  Classical control strategy is given in Sec.  IV. Analysis of 

Simulation Results  is demonstrated in Sec. V. Conclusion  is given in Sec.  VI. 
 

2. Mathematical Modeling Of The PMBLDC Motor  

        The mathematical model of the PMBLDC motor is fundamental for the corresponding 

performance analysis and control system design. The common mathematical models, which 

mainly include differential equation model, transfer function model, and state-space model, are 

presented as follow: 

A. Differential Equation 

        The differential equation model is built for a three-phase two-pole PMBLDC motor [3].  

Hence, the simplified schematic diagram of the motor can be obtained as shown in Fig. 1. 

 
Figure.1  Schematic diagram of the PMBLDC motor. 

 

         Under the positive direction shown in Fig. 1, the phase voltage of each winding, which 

includes the resistance voltage drop and the induced EMF, can be expressed as              

𝑽𝒙  =  𝑹𝒙𝒊𝒙 +  𝒆𝝍𝒙                      (𝟏) 

Where 

     Vx:  phase voltage, in which subscript x denotes phase A, 

                B and C; 

     ix :  phase current. 

     eψx :  phase-induced EMF. 

     Rx:    phase   resistance.   For   three-phase   symmetrical  

                  winding, there exists RA = RB = RC = R). 
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    The three-phase stator windings are symmetrical, the self inductances will be equal, and so as 

the mutual inductance.  As for the three-phase symmetrical windings, there also exist fB(ϴ) = 

fA(ϴ -2π /3), and fC(ϴ) = fA(ϴ +2π /3).  Then, the matrix form of phase voltage equation of 

PMBLDC motor can be expressed as 

[
𝑽𝑨 
𝑽𝑩

𝑽𝑪

] = [
𝑹 𝟎 𝟎
𝟎 𝑹 𝟎
𝟎 𝟎 𝑹

] [
𝒊𝑨
𝒊𝑩
𝒊𝑪

] + [
𝑳 − 𝑴 𝟎 𝟎

𝟎 𝑳 − 𝑴 𝟎
𝟎 𝟎 𝑳 − 𝑴

]
𝒅

𝒅𝒕
[
𝒊𝑨
𝒊𝑩
𝒊𝑪

] + [

𝒆𝑨

𝒆𝑩

𝒆𝑪

] (𝟐) 

       According to Equation (2), the equivalent circuit of the PMBLDC motor can be shown as in 

Fig.2. 

 

 

 

 

 
 

 

 

Figure.2  Equivalent circuit of the PMBLDC motor. 

               The power transferred to the rotor, which is called the electromagnetic power, the 

electromagnetic power is totally turned into kinetic energy equals the sum of the product of current 

and back-EMF of the three phases. That is 

𝑷𝒆 = 𝑻𝒆𝝎 = 𝒆𝑨𝒊𝑨 + 𝒆𝑩𝒊𝑩 + 𝒆𝑪𝒊𝑪   ⇒          

𝑻𝒆 =
𝒆𝑨𝒊𝑨 + 𝒆𝑩𝒊𝑩 + 𝒆𝑪𝒊𝑪

𝝎
           (𝟑) 

    Where 

              Te :     electromagnetic torque; 

              ω:    angular velocity of rotation. 

     Substituting Equations, another form of the torque equation can be 

𝑻𝒆 = 𝑷[𝝍𝒎𝒇𝑨(𝜽) 𝒊𝑨 + 𝝍𝒎𝒇𝑩(𝜽)𝒊𝑩 + 𝝍𝒎𝒇𝑪(𝜽)𝒊𝑪]  (𝟒) 
Where 

               p :    is the number of pole pairs. 

 

     So Equation (4) can be further simplified as represented as 

𝑻𝒆 = 𝟐𝑷𝝍𝒎 𝒊𝑨 =  𝑲𝑻𝒊             (𝟓) 
where 

                KT:     the torque coefficient; 

                 i :    the steady phase current. 

       In order to build a complete mathematical model of the electromechanical system, the motion 

equation has to be included as 

𝑻𝒆 − 𝑻𝑳 = 𝑱
𝒅𝝎

𝒅𝒕
+ 𝑩𝑽𝝎                 (𝟔) 

where 

                   TL :     load torque; 

                    J :     rotor moment of inertia; 
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                   Bv :     viscous friction coefficient. 

     Thus, Equations (2), (3) and (6) constitute the differential equation mathematical model of the 

PMBLDC motor. 

B. Transfer Functions 

     The three-phase PMBLDC motor is controlled by the full-bridge driving in the two-phase 

conduction mode, then when the windings of phase A and B are conducted, there exists 

{

𝒊𝑨 = −𝒊𝑩 = 𝒊  
             

𝒅𝒊𝑨
𝒅𝒕

= −
𝒅𝒊𝑩
𝒅𝒕

=
𝒅𝒊

𝒅𝒕

           (𝟕) 

      Thus, the line-voltage VAB can be rewritten as 

𝑽𝑨𝑩  = 𝟐𝑹 𝒊 + 𝟐(𝑳 − 𝑴)
𝒅𝒊

𝒅𝒕
+ (𝒆𝑨 − 𝒆𝑩)            (𝟖) 

     Take the transient process out of consideration (i.e. ignore the trapezoid bevel edge), then the 

steady eA and eB are equal in amplitude and opposite in direction when phases A and B are turned 

on. So, equation (8) can be expressed as 

𝑽𝑨𝑩 = 𝑽𝒅  = 𝟐𝑹 𝒊 + 𝟐(𝑳 − 𝑴)
𝒅𝒊

𝒅𝒕
+ 𝟐𝒆𝑨

            

                    𝑽𝑨𝑩 = 𝑽𝒅  = 𝒓𝒂𝒊 + 𝑳𝒂

𝒅𝒊

𝒅𝒕
+ 𝒌𝒆𝝎           (𝟗)                                 

 

where 

              Vd :      DC bus voltage; 

               ra :      line resistance of winding, ra =2R ; 

               La :      equivalent line inductance of winding, La =2(L – M) ; 

              ke :      coefficient of line back-EMF,  ke =2pψm=4pNSBm. 

     The transfer function of a PMBLDC motor with no load can be expressed as    

𝑮𝒖(𝒔) =
𝝎(𝒔)

𝑽𝒅(𝒔)
=

𝑲𝑻

𝑳𝒂𝑱𝒔𝟐 + (𝒓𝒂𝑱 + 𝑳𝒂𝑩𝑽)𝒔 + (𝒓𝒂𝑩𝑽 + 𝑲𝑻𝒌𝒆)
 (𝟏𝟎) 

      In the following, the transfer function of a PMBLDC motor when the load torque is not zero, 

it is shown in Fig. 3. 

 

 

 

 

 

 

 

 
 

Figure.3 Structure diagram of PMBLDC motor with  load torque. 

 

         For such a system, the superposition principle holds. Thus, the output of the system equals 

the sum of outputs when Vd(s) and TL(s) are applied to the system, respectively. In Fig. 3, when 

Vd(s)=0 holds, then, the transfer function between load torque and speed is 

𝑮𝑳(𝒔) =
𝝎(𝒔)

𝑻𝑳(𝒔)
= −

𝒓𝒂 + 𝑳𝒂𝒔

𝑳𝒂𝑱𝒔𝟐 + (𝒓𝒂𝑱 + 𝑳𝒂𝑩𝑽)𝒔 + (𝒓𝒂𝑩𝑽 + 𝑲𝑻𝒌𝒆)
   (𝟏𝟏) 
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 Therefore, the speed response of a PMBLDC motor affected together by voltage and load 

torque is given by 

𝝎(𝒔) = 𝑮𝒖(𝒔)𝑽𝒅(𝒔) + 𝑮𝑳(𝒔)𝑻𝑳(𝒔)       
 

𝝎(𝒔) =
𝑲𝑻𝑽𝒅(𝒔) − (𝒓𝒂 + 𝑳𝒂𝒔)𝑻𝑳(𝒔)

𝑳𝒂𝑱𝒔𝟐 + (𝒓𝒂𝑱 + 𝑳𝒂𝑩𝑽)𝒔 + (𝒓𝒂𝑩𝑽 + 𝑲𝑻𝒌𝒆)
   (𝟏𝟐) 

C. State-Space Equations 

        The state-space equation method is one of the most important analysis methods in modern 

control theory. From the state equation we can get all the independent variables and then determine 

all the motion states of the system. A group of first-order differential equations with state variables 

is used in the state-space method to describe the dynamic characteristics of the system. Since it is 

helpful to the realization of different digital control algorithms, the state-space method is becoming 

more and more popular in designing control systems with the fast development of computer 

techniques. Especially in recent years, computer on-line control systems such as optimal control, 

Kalman filters, dynamic system identification, self-adaptive filters and self adaptive control have 

been applied to motor control. All these control techniques are based on the state equation. 

Currents of three phase windings and the angular speed are selected here as state variables, and 

the fourth-order state equation is then derived as 

�̇� = 𝑨𝒙 + 𝑩𝒖         (𝟏𝟑) 

Where 

𝑿 = [𝒊𝑨    𝒊𝑩    𝒊𝑪     𝝎  ]𝑻            
𝑽 = [𝑽𝑨    𝑽𝑩    𝑽𝑪     𝑻𝑳  ]

𝑻            
 

 

 

 

 

 

𝑩 =

[
 
 
 
 
 
 
 
 

𝟏

𝑳 − 𝑴 
            𝟎                𝟎                  𝟎

     𝟎         
𝟏

𝑳 − 𝑴 
            𝟎                   𝟎

          𝟎                𝟎          
𝟏

𝑳 − 𝑴 
            𝟎  

         𝟎                 𝟎                  𝟎            
−𝟏

𝑱 ]
 
 
 
 
 
 
 
 

 

       The controllability of a linear system is the base of optimal control and optimal estimation, so 

it should be determined. Assume the controllability matrix is 

𝑴 = [𝑴𝟎    𝑴𝟏    𝑴𝟐     𝑴𝟑  ]            (𝟏𝟒) 

Where 

𝑴𝟎 = 𝑩,             𝑴𝒊(𝒕) = 𝑨𝒊𝑩,       𝒊 = 𝟏, 𝟐, 𝟑. 
      Then, matrix M can be transformed to 
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Where 

                      𝝀 = 𝟏/(𝑳 − 𝑴) 

      The matrix M meets the condition of rank [M] = 4. So, the system represented by equation (13) 

is controllable and all the poles of the system can be arbitrarily placed by state feedback. 

 
 

3. Optimal Control Strategy 

A.  Linear Quadratic Regulator (LQR) Control System 

      The linear quadratic regulator (LQR) is an optimal controller that provides practical state 

feedback gain matrix. The controller has been used for minimizing the cost function [4]. The LQR 

is a state feedback control technique that computes optimal feedback gain matrices for given states 

pace represented systems with respect to a quadratic cost function which is minimized [5]. The 

feedback gain matrix is associated to a solution of the Riccati equation.  The LQR provides an 

optimal control law with quadratic performance index or quadratic cost function where the system 

dynamics are described as a set of differential equations [6]. The LQR approach deals with the 

optimization of a cost function or performance index. Thus, the designer can weigh which states 

and which inputs are more important in the control action to seek for appropriate transient and 

steady-state performances [7-8]. The optimal control problem is to find a control u which causes 

the system 

�̇� = 𝒈(𝒙(𝒕), 𝒖(𝒕), 𝒕)         (𝟏𝟔) 
       To follow an optimal trajectory x(t) that minimizes the performance criterion, or cost function 

𝑱 = ∫ 𝒉(𝒙(𝒕), 𝒖(𝒕), 𝒕)𝒅𝒕    (𝟏𝟕
𝒕𝟏

𝒕𝟎

) 

      The problem is one of contrained functional minimization a quadratic performance index or 

quadratic cost function is  

𝑱 = ∫ (𝒙𝑻𝑸𝒙 + 𝒖𝑻𝑹𝒖)𝒅𝒕    (𝟏𝟖
∞

𝟎

) 

Where 

               Q: State weighting matrix (square, symmetric and non-negative definite) 

               R: Control weighting matrix (square, symmetric and positive definite) 

               J:  Is a scalar quantity 

       The optimal control law or state feedback law is  

𝑼(𝒕) = −𝑲𝒙(𝒕)                       (𝟏𝟗) 

Where 

                 K:  Is the controller gain or state feedback gain matrix and a value of K that will 

produce a desired set of  

                           closed-loop poles  

         The state feedback gain matrix (K) is found by [8] 

𝑲 = 𝑹−𝟏𝑩𝑻𝑷                     (20) 

Where 

               B:  Is the input matrix of the plant (BLDC motor).  

               P: Is  the unique positive definite solution to algebraic Riccati equation or matrix 

Reccati equation. 

       The feedback gain matrix (K) is associated to a solution of the Riccati equation (P). Therefore, 

the continuous solution of the matrix Riccati equation or algebraic Riccati equation is 
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𝑸 + 𝑷𝑨 + 𝑨𝑻𝑷 − 𝑷𝑩𝑹−𝟏𝑩𝑻𝑷 = 𝟎        (𝟐𝟏) 

Where 

               A:  Is the system matrix of the plant 

      By knowing the state matrices A and B and properly selecting Q and R, the value of K can be 

obtained. The function in MATLAB can be used Lqr(sys,Q,R,N). The discrete quadratic 

performance index or discrete quadratic cost function is  

                   𝑱 = ∑ (𝒙𝑻(𝒌)𝑸𝒙(𝒌) + 𝒖𝑻(𝒌)𝑹𝒖(𝒌))𝑻   (𝟐𝟐)𝑵−𝟏
𝑲=𝟎    

     The discrete solution of the state equation is 

𝑿(𝒌 + 𝟏) = 𝑨(𝑻)𝒙(𝒌) + 𝑩(𝑻)𝒖(𝒌)       (𝟐𝟑) 
Where 

              T:  Is the sampling time of a discrete-time system 

               A(T) :  Is the discrete-time state transition matrix 𝐴(𝑇) = 𝑒𝐴𝜏 

               B(T) : Is the discrete-time control matrix 𝐵(𝑇) = ∫ 𝑒𝐴𝜏𝐵𝑑𝜏
𝑇

0
 

       The discrete solution of the matrix Riccati equation solves recursively for K and P in reverse 

time, commencing at the terminal time, where [6] 

𝑲(𝑵 − (𝒌 + 𝟏)) = [𝑻𝑹 + 𝐵𝑇(𝑻)𝑷(𝑵 − 𝒌)𝑩(𝑻)]−𝟏𝐵𝑇(𝑻)𝑷(𝑵 − 𝒌)𝑨(𝑻)  (𝟐𝟒) 

And 

𝑷(𝑵 − (𝒌 + 𝟏))

= [𝑻𝑸 + 𝐾𝑇(𝑵 − (𝒌 + 𝟏))𝑻𝑹𝑲(𝑵 − (𝒌 + 𝟏))]

+ [𝑨(𝑻) − 𝑩(𝑻)𝑲(𝑵 − (𝒌 + 𝟏))]
𝑻
𝑷(𝑵 − 𝒌)[𝑨(𝑻)

− 𝑩(𝑻)𝑲(𝑵 − (𝒌 +))]  (𝟐𝟓) 

         As K is increased from 0 to N-1, the algorithm proceeds in reverse time, when run in forward-

time,  the optimal control law at step k is  

𝑼(𝒌) = −𝑲(𝒌)𝒙(𝒌)            (𝟐𝟔) 

         The LQR design technique has certain advantages over the classical control design methods 

or Eigen-structure assignment based methods, as it guarantees adequate stability margins [5]. On 

the other hand, there are some limitations the given system must satisfy e.g. it must be stabilizable 

and free of non-observable states which means The LQR approach requires the knowledge of all 

state variables [9]. The performance of LQR may be deviated due to the presence of system noise 

[4]. The LQR in its basic form forces the controlled states to reach zero, which is a known 

regulation problem. In order to transform the regulation capability to command tracking, an 

integral error dynamics must be considered to remove the steady state error. Fig.4  shows Linear 

quadratic regulator LQR  control system 
  

 
Figure.4 LQR Control System 
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A. Kalman Filter State Estimator 

        Kalman Filter is used for both filtering and state estimation purpose. In the design of state 

observers, it was assumed that the measurements y=Cx were noise free. In practice, this is not 

usually the case and therefore the observed state vector  �̂� may also be contaminated with noise. 

The state estimation is the process of extracting a best estimate of a variable from a number of  

measurements that contains noise. The classical problem of obtaining a best estimate of a signal 

by combining two noisy continuous measurements of the same signal was first solved by Weiner 

(1949), his solution required that both the signal and noise be modeled as random process with 

known statistical properties. This work was extended process based upon an optimal minimum 

variance filter, generally referred to as a kalman filter. The kalman filter is a complementary form 

of the Weiner  filter. The plant is subject to a Gaussian sequence of disturbance w(kT) with 

disturbance transition matrix Cd(T). Measurements z(k+1)T contain a Gaussian noise sequence 

v(k+1)T as shown in fig.5 [6] 

 

 
Figure.5 Plant with disturbance and measurements noise 

         

    The general form of the Kalman filter usually contains a discrete model of the system together 

with a set of recursive equations that continuously update the Kalman gain matrix [K] and the 

system covariance matrix [P]. the optimal value of the Kalman gain matrix [K] is the one that 

yields the minimtate um variance [P]. The state estimate �̂�(𝑘 + 1/𝑘 + 1) is obtained calculating 

the predicted state �̂�(𝑘 + 1/𝑘) from 

�̂�(𝒌 + 𝟏/𝒌)𝑻 = 𝑨(𝑻)�̂�(𝒌/𝒌)𝑻 + 𝑩(𝑻)U(T)           (27) 

    And the determine the estimated state at time (k+1)T using 

�̂�(𝒌 + 𝟏/𝒌 + 𝟏)𝑻 = �̂�(𝒌 + 𝟏/𝒌)𝑻 + 𝑲(𝒌 + 𝟏)[𝒁(𝒌 + 𝟏)𝑻 − 𝑪(𝑻)�̂�(𝒌 + 𝟏/𝒌)𝑻]                               

(28) 

Where 

  The term (k/k) :  means data at time k based on information available at time k. 

  The term (k+1/k) :  means data at time (k+1) based on information available at time k. 

  The term (k+1/k+1) :  means data at time (k+1) based on information available at time (k+1). 

    The vector of measurements is given by 

𝒁(𝒌 + 𝟏)𝑻 = 𝑪(𝑻)𝒙𝒌 + 𝟏)𝑻 + 𝑽(𝒌 + 𝟏)𝑻          (29) 

Where 

                𝑍(𝑘 + 1)𝑇 :  is the measurement vector 

                𝐶(𝑇)  :  is the measurement matrix 

                𝑉(𝑘 + 1)𝑇:  is a Gaussian noise sequence 
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      The kalman gain matrix [K] is obtained from a set of recursive equations that commence from 

some initial covariance matrix (P(k/k)). 

𝑷(𝒌 + 𝟏/𝒌) = 𝑨(𝑻)𝑷(𝒌/𝒌)𝑨𝑻(𝑻) + 𝑪𝒅(𝑻)𝑸𝑪𝒅
𝑻(𝑻)           (30) 

              𝑲(𝒌 + 𝟏) = 𝑷(𝒌 + 𝟏/𝒌)𝑪𝑻(𝑻)[𝑪(𝑻)𝑷(𝒌 + 𝟏/𝑲)𝑪𝑻(𝑻) + 𝑹]−𝟏    (31) 

𝑷(𝒌 + 𝟏/𝒌 + 𝟏) = [𝑰 − 𝑲(𝒌 + 𝟏)𝑪(𝑻)]𝑷(𝒌 + 𝟏/𝒌)          (𝟑𝟐) 

Where 

               𝐶𝑑(𝑇) :  is the disturbance transition matrix 

             Q:  is the disturbance noise covariance  matrix 

             R:  is the measurement  noise covariance  matrix 

        The recursive process continues by substituting the covariance matrix P(k+1/k+1) computed 

in equation (32) back into equation (30)  as P(k/k) until K(k+1) settles to a steady value. Equations 

(23) to (32) are illustrated in fig.6  [6] which shows the block diagram of the Kalman filter is 

 
Figure.6 The Kalman Filter 

      
       The difference is that the Kalman filter is computed in forward-time, the LQR being computed 

in reverse-time 
 

C.  Linear Quadratic Gaussian (LQG) control system 

        A control system that contain a LQRegulator/Tracking controller together with a Kalman 

filter state estimator is called a Linear Quadratic Gaussian (LQG) control system. LQG is shown 

in fig. 7. 
 

 
Figure.7 Linear Quadratic Gaussian (LQG) control system 

  

       LQG control can be applied to linear time invariant systems as well as linear time variant 

systems. It deals with uncertain linear systems disturbed by additive white gaussian noise, having 

incomplete state information. Practically it is used for predicting future courses of dynamic 
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systems. Designing of optimal LQG controller with the feedback controller designed in such a way 

that it minimizes cost function [4].    

𝑱 = 𝐥𝐢𝐦
𝒏→∞

𝑬[
𝟏

𝑻
∫ (𝒙𝑻(𝒕)𝑸𝒙(𝒕) + 𝒖𝑻(𝒕)𝑹𝒖(𝒕))𝒅𝒕

𝑻

𝟎

]   (𝟑𝟑) 

Where 

               𝑄 ≥ 0 𝑎𝑛𝑑 𝑅 > 0: are symmetric weighting matrices. 

               𝐸[∙]  : is the expected value 

       In the cost function, the term xTQx corresponds to a requirement to minimize the states of the 

system. the term uTRu corresponds to the requirement to minimize the size of control inputs. The 

selection of matrices Q and R in the cost in the cost function depends on the desired performance 

objective of the system. Minimizing the tracking error between the command signal and measured 

output is the main control objective. The continuous time solution to the optimal observer problem 

is [8] 

𝑳 = 𝑷𝟎𝑪
𝑻𝑹𝟎

−𝟏                                                         (34) 

       Where  𝑃0is the solution of the algebraic Riccati equation: 

𝑨𝑷𝟎 + 𝑷𝟎𝑨
𝑻 − 𝑷𝟎𝑪

𝑻𝑹𝟎
−𝟏𝑪𝑷𝟎 + 𝑸𝟎 = 𝟎               (35) 

        The calculation was executed in Matlab using the kalman(sys,Qn,Rn,Nn) function. The 

function returns the discrete observer gain vector L if the system sys is in discrete time. The block 

diagram of the complete LQG controller can be seen on fig. 8 [10]. 

 
Figure.8 The LQG control system scheme. 

 

Fig.8 shows the combination of the feedback gain matrix KLQR and a Kalman Filter in closed loop 

with a state-space Plant description. A major advantage of the LQG controller design approach 

lies in the possibility to estimate the missing states, i.e. so the designer doesn’t need to have a 

complete knowledge of the state vector. The next advantage is in the noise attenuation capabilities. 

However the cost for these features is in sacrificing the system’s closed-loop robustness. 

 

4. CLASSICAL CONTROL STRATEGY 

A.  PID CONTROLLER 

       Fundamentally, PID controllers are composed of three basic control actions. They are simple 

to implement and provide better performance. The tuning process of the gains of PID controllers 
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can be complex because it is iterative. First, it is necessary to tune the “Proportional” mode, then 

the “Integral”, and then add the “Derivative” mode to stabilize the overshoot, then add more 

“Proportional”, and so on. The PID controller has the following form in the time domain 

𝑼(𝒕) = 𝑲𝒑𝒆(𝒕) + 𝑲𝒊 ∫ 𝒆(𝒕)𝒅𝒕 + 𝑲𝒅
𝒅𝒆(𝒕)

𝒅𝒕

𝒕

𝟎
                (36) 

Where  

            e(t):   is the system error (difference between the reference input and the system output). 

             u(t) :    is the control variable. 

            Kp:     is the proportional gain. 

            Ki :     is the integral gain. 

           Kd :     is the derivative gain. 

        The effects of these parameters on the output response of the system are shown in Table 1 

[11]. A PID controller does not “know” the correct output to bring the system to the set point. It 

moves the output in the direction which should move the process toward the set point and needs 

to have feedback (measurements) to perform. Using the Laplace Transform for equation (36) and 

assuming initial conditions equal to zero the transfer function of the PID can be written as 

𝑮(𝒔) =
𝑼(𝒔)

𝑬(𝒔)
= 𝑲𝒑 +

𝑲𝒊

𝒔
+ 𝑲𝒅𝒔                                 (37) 

 

Transfer function of a PID controller is rearranged, the three terms can be recognized follows: 

𝑮(𝒔) = 𝑲𝒑 (𝟏 +
𝟏

𝑻𝒊𝒔
+ 𝑻𝒅𝒔) = 𝑲𝒑(

𝑻𝒊𝑻𝒅𝒔𝟐+𝑻𝒊𝒔+𝟏

𝑻𝒊𝒔
)       (38) 

Where: 

               Ti=Kp/Ki :    is the integral time constant 

               Td=Kd/Kp :    is the derivative time constant 

 
Table 1: Effect of PID parameter on system response 

 

Parameter Rise-Time Overshoot Settling Time 
Sready State 

Error 
Stability 

Kp Decrease Increase Small Change Decrease Decrease 

Ki Decrease Increase Increase Eliminate Decrease 

Kd 
Minor 

Changes 
Decrease Decrease No Effect 

Improve if 

Kd is small 

 

           The selection of the Proportional Integral and Derivative (PID) controller parameters can 

be obtained using the Ziegler-Nichols method , trail and error method or other tuning methods. In 

terms of Ziegler-Nichols method, the PID controller parameters can be found depending on the 

values of as shown in fig.9  and using the Ziegler-Nichols equations. 
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Figure.9 Zegiler-Nichols PID Parameters 

 
Now, using the following equations, the PID parameters can be derived: 

 𝑲𝒑 = 𝟏. 𝟐
𝑻𝒐

𝑳𝑶
        (39) 

𝑻𝒊 = 𝟐𝑳𝑶            (40) 

𝑻𝒅 = 𝟎. 𝟓𝑳𝑶        (41) 

     In this paper, the PID controller parameters can be obtained by the help of optimal control 

methods 

 

5. Analysis Of Simulation Results Of LQR And LQG Optimal Controllers Based On     

    Kalman Filter 

           The modeling of three phase permanent magnet brushless direct current (PMBLDC) motor 

with classical and optimal controllers has been derived. in addition to that, simulation and 

performance analysis of the PMBLDC motor with and without optimal controllers have been 

implemented and investigated by using MATLAB/SIMULINK software. The goal of control 

engineering design is to obtain the configuration, specifications, and identification of the key 

parameters of a proposed system to meet an actual need [12-13]. Establishment of goals and 

variables to be controlled, The most basic requirement of  PMBLDC motor is that it should rotate 

at the desired output response (desired value or reference input), as well as, optimals controllers 

are used for reducing the sensitivity of the actual output response to external load (external 

disturbances), load variations (changes in the torque opposed by the motor load), noise and 

parameters changes , where the actual output response variations induced by such  disturbances 

must be minimized .  
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Figure.10 Simulation results of the PMBLDC motor with PID, LQR-PID, Kalman Filter-PID and LQG 

based on Kalman Filter-PID controllers. 
 

Table 2: A comparison of  the simulation results of the PMBLDC motor with classical and  optimal 
control  strategy  in terms of time response specifications 

  

              The PMBLDC Motor with the Effect of  External Disturbance  

Time Domain 

Specifications 
 

Strategy of Control  

 

     Classical 

      Control 

      Strategy 

Optimal Control 

 Strategy 

PID 

Controller 

LQR-PID 

Controller 

Kalman Filter-

PID Controller 

LQG Based on 

Kalman_Filter-PID 

Controller 

Settling Time (ts) 0.2420 Sec 0.1134sec 0.1117 sec 0.0421 sec 

Maximum Overshoot (Mp) 8.9353 % 5.3674% 4.9728 % 0.54333% 

Peak Time (tp) 0.075 Sec 0.072sec 0.072 sec 0.068 sec 

Rise Time  (tr) 0.034 Sec 0.031sec 0.0315 sec 0.026 sec 

Delay Time (td) 0.0133 sec 0.0103 sec 0.01 sec  0.0061 sec 

  Steady state error  (ess) 0.000030477 0.000028722 0.000027152 0.000024772 

Damping ratio (ζ) 0.60948 0.68141 0.69076 0.85659 
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Table 3: A comparison of the simulation results of the PMBLDC motor with classical and   
optimal control strategy in terms of frequency response specifications 

 
              The PMBLDC Motor with the Effect of  External Disturbance  

Frequency Domain 

    Specifications  

Strategy of Control  

 

        Classical 

        Control 

        Strategy 

Optimal Control 

 Strategy 

PID 

Controller 

LQR-PID 

Controller 

Kalman Filter-

PID Controller 

LQG Based on 

Kalman_Filter-PID 

Controller 

Phase Margin (P.M) 

 
84.5691 0  88.115 0 88.4233 0 90.9835 0 

Gain Margin (G.M) 

 
Inf dB Inf dB Inf dB Inf dB 

Bandwidth (ωb) 

 
121.6004 Hz 148.7355 Hz 151.1262 Hz 208.8586 Hz 

Resonant Peak (Mr) 

 
1.0348 1.0026 1.0010 1.1312 

Resonant Frequency  (ωr) 

 
54.2915 Hz 38.3434 Hz 31.5745 Hz 

Damping ratio (ζ) 

=0.85 
 

 

Table 4: Comparison for all performance indices parameters of the PMBLDC motor  

with classical and optimal control strategy 

 

The Three Phase PMBLDC Motor  without the effect of external load [TL(s)] 

 

 

Strategy of 

Control 
 

 

Performance Criteria 

 

IAE 

𝐼𝐴𝐸 = ∫ |𝑒(𝑡)|𝑑𝑡
𝑡

0

 

 

 

ITAE 

𝐼𝑇𝐴𝐸 = ∫ 𝑡|𝑒(𝑡)|𝑑𝑡
𝑡

0

 

 

ISE 

𝐼𝑆𝐸 = ∫ (𝑒(𝑡))2𝑑𝑡
𝑡

0

 

 

ITSE 

𝐼𝑇𝑆𝐸 = ∫ 𝑡(𝑒(𝑡))2𝑑𝑡
𝑡

0

 

PID 

Controller 0.0001523856 0.0003809641 0.0000000046 0.0000000116 

LQR-PID Controller 0.0001436105 0.0003590263 0.0000000041 0.0000000103 

Kalman Filter-PID 

Controller 
0.0001357600 0.0003394001 0.0000000037 0.0000000092 

LQG Based on 

Kalman_Filter-PID 

Controller 

0.0001238615 0.0003096539 0.0000000031 0.0000000077 
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Figure.11 Comparison of maximum overshoot (%Mp) for classical and   

optimal control strategy 
 

 
 

Figure.12 Comparison of Rise Time (tr), Peak Time (tp) and Setting Time (ts)  

for classical and optimal control strategy 

 

 
Figure.13 Comparison of Steady State Error (ess) for classical  

and optimal control strategy 
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Figure.14 Bode Diagram of the PMBLDC motor with PID, LQR-PID, Kalman Filter-PID and LQR based 

on Kalman Filter-PID controllers 

 

 
 

Figure.15  Comparison of Bandwidth  (𝜔𝑏) for classica 

l and optimal control strategy 
 

As a result of the simulation, LQG based on Kalman Filter-PID controller is the best controller 

compared to other controllers, which presented satisfactory performances, process good robustness 

and also perfect speed tracking. The main objective of controllers is to minimize  the error signal 

or in other words the minimization of performance criteria. Therefore, A set of performance 
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indicators (Integral Absolute Error (IAE), Integral Time Absolute Error (ITAE), Integral Square 

Error (ISE), Integral Time-weighted Squared Error (ITSE)) have been used as a design tool aimed 

to evaluate tuning methods results. Performance criteria shows the superiority of , LQG based on 

Kalman Filter-PID control method  over PID, LQR-PID and Kalman Filter-PID control methods.  

6 . Conclusion 

            This paper has demonstrated that the performance of a BLDC motor can be improved by 

using LQR and LQG  optimal Controllers Based on Kalman Filter with PID controller for 

disturbance attenuation and noise suppression. The actual output response of the permanent 

magnet brushless direct current (PMBLDC) Motor is controlled by means of the PID control 

method, LQR-PID control method, and LQG based on Kalman filter PID  control method for 

enhancement the stability and accuracy under the effect of load variations, external disturbances, 

noise and parameters changes. In this paper, with reference to the results of the computer 

simulation by using (MATLAB & SIMULINK) software, the performance characteristics of 

classical and optimal controllers  are compared in terms of the time response and frequency 

response. The simulation results illustrate that LQG Based on Kalman Filter-PID Control method 

performs better than PID, LQR-PID and Kalman filter-PID control method, and  has verified all 

design requirements of the system. LQG Based on Kalman Filter-PID Control method is the best 

Controller which presented satisfactory performances and possesses good robustness  This control 

method seems to have a lot of promise in the real world application.  
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