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 الملخص

الجبر على التوالي. الهدف  -BO / BH / Z كتوسيع لمفهوم -BO / BH / Z الهدف الرئيسي من هذه الورقة هو تقديم مفاهيم الجبر الخشن
)القوي( ذو  BO / BH / Z التحقيق في مفهوم التشكلالآخر هو النظر في الرواسم )القوي( ذو القيمة المحددة في هذه الهياكل الجبرية. يتم 

، ندرس  BO / BH / Z بعدة خصائص. باستخدام مفهوم مساحة التقريب المعمم والمثالية لجبر BO / BH / Z القيمة المحددة في جبر
لى ذلك ، تمت دراسة بعض مفهوم كنوعًا آخرن من التقريبات من أعلي ومن أسفل المعممة بناءً على النموذج المثالي. بالإضافة إ

 الخصائص. 

 

 

Abstract 

  The main goal of this paper, present the concepts of rough BO/BH/Z- Algebra as extended of the 

concept of BO/BH/Z-algebra respectively. The other goal is to consider the (strong) set-valued mapping in 

these algebraic structures. The concept of a (strong) set-valued BO/BH/Z-morphism in BO/BH/Z algebras 

is investigated with several properties. Using the concept of generalized approximation space and ideal of 

BO/BH/Z-algebra, we consider another type of generalized lower and upper approximations based on the 

ideal. In addition, some properties are studied. 

  

Keywords:  upper approximation, Rough set, BO- Algebra, BH- Algebra 

  

1. Introduction 

TheRough set theory was present by Pawlak [1] in 1982. It is a good tool for modeling and 

processing incomplete information in the information system. The concepts of rough set theory 

build of lower and upper approximations. J. Neggers and H. S. Kim [2] introduce the concept of 

B-algebras. In[3], Young. B J. and el. consider the fuzzification of (normal) B-subalgebras in B-

algebras. In[4] Chang Bum Kim and Hee Sik Kim introduce the notion of a BO-algebra. Y. B. 

Junand et[5] introduced the concept of a BH-algebra. The Z-algebra present by M. 

Chandramouleeswaran And Et.in[6].The main purpose of this paper is to introduce rough 

BO/BH/Z-algebra  as extended of the concept of BO-algebra (BH-algebra ) respectively Moreover, 

we introduce some properties of approximations and these algebraic structures.  
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2. Preliminaries 

We start by giving some definitions and results about rough sets.  

Suppose that R is an equivalence relation on a universe set (nonempty finite set) U. The pair (U,R) 

is denoted to the approximation space. The notation U/R is denoted as the family of all equivalent 

classes[a]R. The empty set is , the elements of U/R are called elementary sets, and Ac is a 

complementation of A For any A  U. 

Definition 2.1: Let (U, R) be an approximation space. Define the upper approximation of A is  

R𝐴̅̅ ̅̅ = {𝑎 ∈ 𝑈: [𝑎]R ∩ 𝐴 ≠ ∅} and the lower approximation of A is R𝐴 = {𝑎 ∈ 𝑈: [𝑎]R ⊆ 𝐴 }   the 

boundary is 𝐵𝐴R = R𝐴̅̅ ̅̅ − R𝐴 . If 𝐵𝐴𝑅 = ∅ , then A is the exact (crisp) set, and if 𝐵𝐴𝑅 ≠ ∅, X is 

a rough set ( inexact). 

Preposition 2-1: Suppose that (U, R) is an approximation space. Let A,BU, then: 

1) R𝐴 ⊆ 𝐴 ⊆ R𝐴̅̅ ̅̅ , 

2) R∅ = R∅ ̅̅ ̅̅̅, R𝑈 = R𝑈 ̅̅ ̅̅ ̅,  

3) R(𝐴 ∪ 𝐵) ⊇ R(𝐴) ∪ R(𝐵),  

4) R(𝐴 ∩ 𝐵) =  R(𝐴) ∩ R(𝐵),  

5) R(𝐴 ∪ 𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = R(𝐴)̅̅ ̅̅ ̅̅ ∪ R(𝐵)̅̅ ̅̅ ̅̅ ̅ . 

6) R(𝐴 ∩ 𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⊆ R(𝐴)̅̅ ̅̅ ̅̅ ∩ R(𝐵)̅̅ ̅̅ ̅̅ ̅ . 

7) R𝐴𝐶  ̅̅ ̅̅ ̅̅ =  (R𝐴)
𝑐
. 

8) R𝐴𝐶 = (R𝐴 ̅̅ ̅̅̅)𝑐. 

9) R( R𝐴) = R(R𝐴)̅̅ ̅̅ ̅̅ ̅̅ =  R𝐴.   

10) ( R( R𝐴)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

=  R( R𝐴) =  R𝐴 ̅̅ ̅̅̅. 

11) R𝐴 ̅̅ ̅̅̅ R𝐵 ̅̅ ̅̅ ̅= R𝐴𝐵 ̅̅ ̅̅ ̅̅ ̅. 

12) R𝐴 R𝐵 R𝐴𝐵. 

 

The concept of BO/ BH/Z-algebra with examples are discussed in this portion. 

Definition 2.2: Let X be a non-empty set with binary process , 0X is B-algebra if  x, y, z X 

sitsifies: 

 C1: 𝑥𝑥 =  0. 

 C2: 𝑥  0 =  𝑥. 

 C3 :(𝑥𝑦) 𝑧 =  𝑥(𝑧 (0 𝑦)). 

where 0 is called zero element. 
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Remark 2.1. The element 𝑒𝑋 is called right-identity if x*e =x and left identity if e*x=x for every 

xX and xe. e is called the identity if x*e =x and e*x=x for every xX. Then (X,∗) is called B-

algebra containing identity. 

Example 2.1.  Suppose that X = {0,1,2 e}. Define the binary operation on X as shown in the 

following table 1 

 

* 0 1 2 e 

0 0 1 2 e 

1 1 0 e 2 

2 2 e 0 1 

e e 2 1 0 

Table 1 

Table 1 shows that the (X, *) is B-algebra with the identity element. 

Definition 2.3. Let X be a non-empty set with binary process , 0X is BH-algebra if  x, y, z 

X sitsifies:  

(C1), (C2), and  

(C4) 𝐹𝑜𝑟 𝑎𝑛𝑦 𝑥, 𝑦 ∈  𝑋, 𝑥 ∗  𝑦 =  𝑦 ∗  𝑥 =  0 𝑥 =  𝑦 . 

Definition 2.4 Let X be a non-empty set with binary process , 0X is BO-algebra if  x, y, z 

X sitsifies:  

(C1), (C2) and  

C5: 𝑥 ∗  (𝑦 ∗  𝑧) = (𝑥 ∗  𝑦)  ∗  (0 ∗  𝑧) 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥, 𝑦, 𝑧 ∈  𝑋. 

Example 2.2: Suppose that X={ 0,1,2,3,4} and the following table 2 of  : 

 

* 0 1 2 3 4 

0 0 2 1 4 3 

1 1 0 3 2 4 

2 2 4 0 3 1 

3 3 1 4 0 2 

4 4 3 2 1 0 

Table 2 

 

Table 2 shows that the (X,,0) is BO-algebra. 

Example 2.3. Suppose that X={ 0,1,2 ,3} and the following table 3 of   
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* 0 1 2 3 

0 0 1 0 0 

1 1 0 0 0 

2 2 2 0 3 

3 3 3 3 0 

Table 3 

Table 3 shows that the (X,,0) is a BH-algebra. 

Definition 2.4. Suppose (I≠)  BH/Z)-algebra. I is called a BH/Z-ideal of X respectivtly if it 

satisfies the following conditions:  

(1) 0 ∈ I,  

(2) (𝑥 ∗ 𝑦) ∈  𝐼, 𝑦 ∈  𝐼  𝑥 ∈ 𝐼, ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋.  

 (3) (𝑥 ∗ 𝑦) ∗ 𝑧 ∈  𝐼, 𝑦 ∈  𝐼  𝑥 ∗ 𝑧 ∈ 𝐼, ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋 , then I called strong Ideal of X. 

Definition 2.5[6].  Let X be a non-empty set with binary process , 0X is Z-algebra if  x, y, z 

X sitsifies(C1-C2) and 

C6:𝑥 ∗  𝑥 =  𝑥 

C7: 𝑥 ∗  𝑦 =  𝑦 ∗  𝑥, 𝑤ℎ𝑒𝑛 𝑥 ≠ 0 𝑎𝑛𝑑 𝑦 ≠  0, ∀𝑥, 𝑦 ∈  𝑋. 

Example 2.4. Suppose that X={ 0,1,2,3 } and the following table 4 of   

 

* 0 1 2 3 

0 0 1 2 3 

1 1 0 0 1 

2 0 0 2 2 

3 0 1 2 3 

Table 4 

Table 4 shows that the (X,,0) is a Z-algebra. If I = {0, 1, 2}, then it is is a Z-ideal of X. 

3. Main Result 

Definition 3.1: Suppose that  be an equivalence relation on a set X=(X,*,0). If x ∈ X, defined  

[x] the class of x s follows: [x] = {y ∈ X | (x, y) ∈ }.The equivalence relation  on X is called 

a congruence relation if  

(∀𝑥, 𝑦, 𝑧 ∈  𝑋) ((𝑥, 𝑦)  ∈  ⇒  (𝑥 ∗  𝑦, 𝑦 ∗ 𝑧)  ∈  , (𝑧 ∗  𝑥, 𝑧 ∗  𝑦)  ∈  ) . 
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Definition 3.2. Suppose that A and B two non-empty subsets of X, we denote 𝐴𝐵 =  𝐴 ∗ 𝐵 =

 {𝑎 ∗ 𝑏 |𝑎 ∈  𝐴 𝑎𝑛𝑑 𝑏 ∈  𝐵}. Let   be an equivalence relation on X. Then (∀𝑥, 𝑦 ∈

 𝑋)([𝑥][𝑦] ⊆ [𝑥 ∗ 𝑦]).  

If Y ∈ P(X), we define the upper approximation of Y by +[𝑌] =  {𝑥 ∈ 𝑋 | [𝑥] ⊆  𝑌} and the 

lower approximation of Y is – [𝑌] =  {𝑥 ∈  𝑋 | [𝑥] ∩  𝑌 ≠  ∅}. The pair (X, ) is called an 

approximation space. 

 Note that, +[Y]  and −[Y] are subsets of X. 

If Y X, then Y is said to be definable if +[Y]  = −[Y] and rough otherwise. 

 

Suppose that I be a BO/BH-ideal of X. Define a relation  on X by (x, y) ∈  if and only if x* y ∈ 

I and y*x ∈ I. 

Definition 3.3. Suppose that (X, ) is an approximation space, a pair (I1, I2) ∈ P(X) × P(X) is 

called a rough set in (X,) if and only if (I1, I2) = Apr(X) for some X ∈ P(X). 

Example 3.1: consider example 2.2. Let Y = {0, 1} be a BO-ideal of X. Suppose that  is an 

equivalence relation on X related to Y. 

So, Y0 = Y1 = Y, Y2 = {2}, Y3 = {3}, and Y4 = {4}. Hence, -[Y, {0,1}] = {0, 1} ,  -[Y, {0,2}] = 

{2}, -[Y, {0,3}]= {3}, and -[Y, {0,1,2,3}] = {0, 1, 2,3}. However,  + [Y, {0,1}]  = {0, 1}.+ [Y, 

{0}] = {0, 1}, + [Y, {2}] = {0, 2} , + [Y, {1,2,3}] = {0,1, 2, 3} , + [Y, {0,2,3}] = {0, 1, 2, 3},+ [Y, 

{1,2,3,4}] = {0, 1, 2,3, 4}. 

Here, there exists a non-BO-ideal Y of X such that their lower and upper approximation are BO-

ideals of X. 

Proposition 3.1. Let X be a Bo(BH)-algebra and A, B two subsets of  X. Let  be an equlivence 

relations on X. Then the following hold:  

1) – [𝐴] ⊆  𝐴 ⊆  +[𝐴], 

2) +[𝐴 ∪  𝐵] = +[𝐴] ∪  +[𝐵], 

3) – [𝐴 ∩ 𝐵] =  −[𝐴] ∩  −[𝐵], 

4) 𝐼𝑓 𝐴 ⊆  𝐵 , 𝑡ℎ𝑒𝑛 – [𝐴]  ⊆  −[𝐵]  𝑎𝑛𝑑  + [𝐴]  ⊆  +[𝐵] , 

5) – [𝐴] ∪ −[𝐵] ⊆  −[𝐴 ∪ 𝐵], 

6) +[𝐴 ∩ 𝐵]  ⊆  +[𝐴]  ∩ +[𝐵] . 

Proof. Straightforward. 

 

Let X be a BH-algebra and let ∅ ̸= A, B ⊆ X. Define A ∗ B := {a ∗ b|a ∈ A, b ∈ B}. 
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Proposition 3.2.[7]. Suppose that X is BH-algebra. Let  be a congruence relation on X. Suppose 

that  A, B are two non-subsets of  X. Then  

1) +[𝐴] ∗ +[𝐵] ⊆  +[𝐴 ∗ 𝐵]. 

2) 𝐼𝑓 – [𝐴 ∗ 𝐵] ≠ , 𝑡ℎ𝑒𝑛 – [𝐴] ∗ −[𝐵] ⊆  −[𝐴 ∗  𝐵] . 

Proof.   

Assum that x +[A]∗+[B] . Then x = a∗b for some a ∈ +[A] and b ∈+[B].  

Then, we have y, z ∈ X such that y∈[a]∩A and z∈[b]∩B. Hence y∈[a], z∈ [z] , y∈A and 

z∈B. Since  is a congruence relation on X, y∗z ∈ [a]∗[b]= [a ∗ b]ρ. Since y∗z ∈ A ∗ B, we 

have x = a ∗ b ∈+[A∗B]. 

Suppose that x∈−[A]∗−[B]. Then x = a∗b for some a ∈ −[A] and b∈−[B]. Thus we have 

[a]⊆ A and [b]⊆ B. [a∗ b] = [a]∗[b] ⊆ A ∗ B because  is a congruence relation on X. Then, 

x =a∗b ∈ −[A ∗B] . 

Proposition 3.3. Suppose that X is BO/Z-algebra. Let  be a congruence relation on X. Suppose 

that  A, B are two non-subsets of  X. Then  

1) +[𝐴] ∗ +[𝐵]  ⊆  +[𝐴 ∗ 𝐵]. 

2) 𝐼𝑓 – [𝐴 ∗ 𝐵] ≠ , 𝑡ℎ𝑒𝑛 – [𝐴] ∗ −[𝐵] ⊆  −[𝐴 ∗  𝐵] . 

Proof the same strategy in Proposition 3.2. 

 

Definition 3.4. Let X and Y be non-empty universes and consider the mapping F : X → P(Y). we 

say F is a set-valued mapping and  (X, Y, F) is a generalized approximation space. Define 𝐹 ∶

 𝑋 →  𝑃( 𝑌) 𝑎𝑠 𝐹 ∶=  {(𝑥, 𝑦)  ∈  𝑋 ×  𝑌 | 𝑦 ∈  𝐹(𝑥) and for any subset A of Y , the generalized 

lower and upper approximations, F-(A) and F+(A), are defined by 𝐹−(𝐴)  =  {𝑥 ∈  𝑋 | 𝐹(𝑥)  ⊆

 𝐴} and 𝐹+(𝐴)  =  {𝑥 ∈  𝑋 |𝐹(𝑥)  ∩  𝐴 ≠  ∅}. We say that the pair F-(A),F+(A)  is a generalized 

rough set. 

Definition 3.5. Suppose that F : X →P(Y) is A set-valued mapping. We called F is a set-valued 

BO/ BH/Z-morphism if it satisfies :(∀𝑥, 𝑦 ∈ 𝑋) (𝐹(𝑥) ∗ 𝐹(𝑦)  ⊆  𝐹(𝑥 ∗ 𝑦)). A set-valued 

mapping t : X → P(Y) is called a strong set-valued BO/BH/Z Imorphism if it satisfies: (∀𝑥, 𝑦 ∈

 𝑋) (𝐹(𝑥)  ∗  𝐹(𝑦)  =  𝐹(𝑥 ∗  𝑦)). 
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4. Conclusion 

  This paper presents the new concepts of rough BO/BH/Z- Algebra as extended of the concept of 

BO/BH/Z-algebra respectively. The concept of a (strong) set-valued BO/BH/Z-morphism in 

BO/BH/Z algebras is investigated with several properties by Using the concept of generalized 

approximation space and ideal of BO/BH/Z-algebra, some properties are studied. We are sure that 

the results have some applications, so let us open the door to further finding new results in future 

work. 
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