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Abstract

The basic principles of this paper about the Feedback linearization is a common approach used in
controlling nonlinear systems. The approach involves coming up with a transformation of the nonlinear
system into an equivalent linear system through a change of variables and a suitable control input.
Moreover, Input-output linearization techniques are restricted to processes in which these so-called zero
dynamics are stable and this objective is achieved by deriving artificial outputs that yield a feedback
linearized model with state dimension and a linear controller is then synthesized for the linear input-state
model. Furthermore, in this paper three different cases of feedback control will be used to stabilize the
nonlinear system.

Keywords: State feedback linearization (SFL) . Input-output state feedback linearization (IOSF). Feedback (Fb). Input-State
Linearization (ISL). Output-State Linearization (OSL)
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Introduction

This paper introduces the idea of state feedback linearization (SFL) and Input-output state
feedback linearization (IOSF), and their application on several nonlinear systems. In addition, a
simulation for all these problems is done by using Matlab Software to notice the systems response
for all feedback controls applied. Moreover, in this paper three different cases of feedback control
will be used to stabilize the nonlinear system and Feedback Linearization is the idea of feedback
linearization is to introduce some transformation (usually to the system input) that makes the
system between new input and output linear, and thus any linear control design is made possible.

The Equations used to Solve Problems:.

We will using the system for three different cases of feedback control will be used to
stabilize the nonlinear system given by:

x=f(x)+glx)u X€ER" & UER

fiR*= R" & g; R"=R"

where y € R™ is the state vector, u € RP is the vector of inputs, and £, § € R" are the
vector of outputs.

Input-State Linearization:
In general to know if the system is input state Linearization, and there must be a
transformation T(x) that transform the system to linear model. Moreover, the
transformation T(x) must be diffeomorphism and witch mean T(x) is continuous and
T~1(x) is exist and it is also continuous. The system that is represented by the oscillation
equations.

The state Equation For First System:

xll = —x1 + xz
X'y =% — Xy —X1X3+ U
x,3 = x1 + x1x2 - 2X3
—x1 + XZ 0
X1 — Xy — X1X3 ] , glx) = [1]
x1 + xle - ZX3 0
In the first we need get Z = T(x) and the transformation T(x) must satisfies these

F(x) =

conditions

oT. oT. aT,

6_1__0 —Zg— 0, a— * 0, Tz(x)——f Tg(x)—_f
Ty Ty 0Ty 0Ty or,
0T, 0T, 0T,
[6_961 x5 6x3] [ ] —=0= TZ - Tl(xl'x3)
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aT; . [6T3 s aTg] _ 0Ty 40
— =
9 0x;  0x, 0x3l || T x,
[ —X;t+X
T, . [dT, 9T, aT T X
T,(0) = —f = |=— : 1] X1 — Xz — X1X3
0x 0x; Ox, 0Ox; X, + x50, — 25
T, 0T, T,
E =0 = . TZ(x) = a X ( X1 + xZ) +— ax X3 (xl + X1Xp — 2x3)
—X1+X
T, . [T, AT, aT T
Ts(x) = — 2 - 2] X1 — Xz — X1X3
ox 6x1 0x, 0x3 X + x,%, — 2%3
& =0 = T3 (X) = aﬂ (—x1 + xz) + % (xl + X1Xp — 2x3)
6XZ axl

oT,
Letstry Ty = x;+ x3 = T, = L (—x; + %) + (x1 + x1%; — 2X3)

0x,
Ty = (—x1 +x3) + (g + x1x5 — 2x3) = xz + x1x, —
We have found that it doesn’t meet the condition.
Let'stry Ty = x2 4+ x3 = T, = 2x;(—x; + x3) + (%1 + x1%, — 2x3)
Ty = —2x2 +2x.%, + X1 + X% — 203 = T,
= —2x% 4+ 3x;%, + x; — 2x3
We have found that it doesn’t meet the condition.
Let'stry Ty = x2 — x3 = T, = 2x;(—x; + x3) — (%1 + X120, — 2x3)
Ty = —2x2 +2x,%, — X1 — X1Xp + 2x3 = T, = —2x2 + x,%, — x1 + 2x3
And, we have found that it doesn’t meet the condition because T; = Ty (x4, X3)
Let'stry Ty = x2 —3x3 = T, = 2x(—x; + x3) — 3(x; + X1, — 2x3)
T, = —2x2 + 2x,x, — 3x; — 3x;%, + 6x3 = T, = —2x2 — x;%, — 3%, + 6x3
Also, we have found that it doesn’t meet the condition because T; = T; (x4, x3)

2x3

Letstry Ty = x2 + 2x2 = T, = 2x;(—x; + x3) + 4(x; + 1%, — 2x3) T, =
—2x% 4+ 2x,x, + 4x; + 4x,x, — 8x3 = T, = 2x; + 4x,x, — 8x5
It doesn’t meet the condition because T; = Ty (xq, X3)

T, = x2 — 4x2 = T, = 2x.(—x; + x3) — 8(x; + x1x, — 2x3)

Let’s try with

T, = —2x2 + 2x,x, — 8x; — 8x,X, — 16x3 = T, = —2x% — 6x,X, — 8x; —

16x;

Also, it doesn’t meet the condition because T, =
Ty (%1, x3)

Let'stryto T; = 5x2 — 10x3 = T, = 10x;(—x; + x3) — 10(x; + x1%, — 2x3)

T, = —10x% + 10x,x, — 10x; — 10x;x, + 20x3 = T, = —10x% — 10x, +
20x3
We note that the last equation meets the condition:
aTz aT,
T; = (=1 + x3) + =— (1 + x1x5 — 2x3)
0x; 0x3
T3 = —20x; — 10 (—x1 + x3) + 20(x; + x1%, — 2x3)

T3 = ZOX% - 20X1x2 + 1OX1 - 1Ox2 + 20x1 + Zoxle + _4‘0x3
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T3 == Zoxf + 30X1 - 10x2 - 4‘0x3

A 5x2 — 10x4
T(x)=|Z,| = —10x% — 10x; + 20x3
Z3 20x2 + 30x; — 10x, — 40x;3

Now we have to find the x = T~1(2)
5x2—10x; = Z; = 5x2=7,+10x; = Divisible by 5

x2=0.27Z,+2x;3
—10x% + 20x3 — 10x; = Z, = Z, =—10(0.2 Z;+2x3) —10x; + 20x5
= 10x, = —2Z, — Z, Divisibleby 10 = x, = —0.2Z, — 0.1Z,
x2=0.2Z;+2x3 = 2x3=x2-0227,
(= 0.2Z, — 0.17,)% — 027, = 2x3 = x3 = 0.02 Z2 — 0.1Z; + 0.02Z,Z, + 0.005Z2
Z3=20x% + 30x; — 10x, — 40x5
10x,=20x2 + 30x, —40x3 —Z3 Divisibleby 10 = x,=2x% + 3x; —4x3 —
0.1Zs
X,= 2(=0.27, — 0.1Z,)* + 3(=0.27, — 0.1Z,) - 4(0.02Z% — 0.1Z, + 0.02Z,Z, +
0.00522) ~0.17,

= x, = —0.6Z, — 0.3Z, — 0.1Z5+ 0.47, = x, = —0.2Z; — 0.3Z, — 0.1Z,

We can find x = T71(z) in system matrix:

X1
X2
X3

Z; = 10x,%; — 10x5
Zy = 10x;(—x1 + x5) — 10(x; + x,%, — 2x3) = —10x? — 10x; + 20x5
= —10(-0.2Z; — 0.1Z,)? — 10(-0.2Z; — 0.1Z,) + 20(0.02Z% — 0.1Z, +
0.02Z,Z, + 0.005Z2)
Z, =—047? —0.47,7,- 0122 + 2Z,+ Z, + 0.42%? =27, + 0.4Z,Z,+ 0.172

_O.2Z1 - 0.122
= T_I(Z) = _0221 — 0322 - 0123
0.02Z% — 0.1Z; + 0.02Z,Z, + 0.005Z2

Z1.= Z,
Z, = —20x;,%; — 10%; + 20x3
Zz = - 20X1 (—X1 + XZ) - 10(_X1 + xZ) + ZO(XI + x1x2 - ZX3)

Z, = 20x? —30x; — 10x, — 40x5
Z, = 20(=0.2Z; — 0.1Z,)%> — 30(—0.2Z, — 0.1Z,) — 10(—0.2Z, — 0.3Z, — 0.1Z3) —
40(0.02Z2 — 0.1Z, + 0.02Z,Z, + 0.005Z3) —0.1Z;
Z,= 0872 +082Z,Z,+ 0.2Z% —6Z, —37Z,+27,+37Z,+7Z3 — 0.82%? + 47, - 0.8 Z,Z,
-0.272
Z, =17
Z3 = 40x,%; + 30%; — 10x, — 40%5
Z3 = 40x; (—x1 + x3) +30(=x; + x3) — 10(x; — x, — X1 %3 + u) — 40(x; + X, %,
— 2x3)
Z3 = —40x? — 80x; + 40x, + 10x;x3 + 80x3 — 10u
‘= —40(—0.2Z; — 0.1Z,)%* — 80(—0.2Z; — 0.1Z,)
+40(-0.2Z, — 0.3Z, — 0.1Z3) + 10(—0.2Z; — 0.1Z,)(0.02Z% — 0.1Z,
+0.02Z,Z, + 0.005Z% ) 4+ 80( 0.02Z% — 0.1Z; + 0.02Z,Z, + 0.005Z2 )
— 10u

N
w
|
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Z3 =0.27% —0.405Z3 — 47, — 475 + 0.1Z,Z, — 0.24Z%7, — 0.03Z,Z2 — 10u
f(2) 9(2)
Hence, deign SFL controller that generates Z — 0 with the input and output.
1
u= o=@ +v]
And v is
v=>Fkyz + kyz, + k3z3
f(z) = 0.2Z% —0.405Z3 — 4Z, — 475 + 0.12,Z, — 0.24Z%7, — 0.03Z,Z3
g9(z) = 10
Since the k4, k,, ks should be chosen to place of the system poles in LHP
The system is state feedback linearizable and its global diffeomorphism , also we have to
found many other points that can meet the condition in the first problem such that :
(1) 2x2 -4x,4 (2) 3x% - 6x3 (3) x% - 2x4
(4) 4x? - 8x; (5) 6x% - 12x5 (6) 7 x2 - 14x,

Every those points can be meet the conditions T; = T;(xq, x3)
The System States Response

1

—— x1

R S O NS S o |

—+— x3

T e e
04|t R S N S— S feeeeneen R .

USRS S N S NN S ISR SR S

0

System States

R R s E S S— S S— A —
041 Fo T e e s e
T L B S o o R

T E— AU U U SO PR S A .

30 40 50 B0 70 80 90
Time in sec

Figure (1) System States Response

The state Equation For First System:

And we want to Consider the system to make this’s system input-output feedback
linearizable:
x'y = —x, + 2x2 sin(x;)
X'y, =x3—u
x'3 = —x1 — X3 y=X1

By calculating the derivative of the output y we get:
T, =y =2x = h(x)
T3 =y =X =X, + 2x{ — sin(x;) = Lgh(x)

V=X, + 4x,%; — x1c08(x1)
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= x3 —u + 4x;(x, + 2x% — sin(x;)) — (x, + 2x% — sin(x;) cos(x;)
= J = x3 —u+ 4x;x, + 8x3 — 4 x;5in(x;) — x5c0 s(x;) — 2x%co s(xq)
+ sin(x;) cos(x,)
Also, the system has a relative degree 2 in R* and is input-output linearizable in D
Tofind T,(x)

a’1—'1 - [aTl aTl aTl] 01 _ aTl C0S T =T
ox 9~ 0x, 0x, 0x3 _O T ox, 1= T1(x1,%3)
Let’s choose T; = x5 because it is satisfies % g=0

_ql_ X3 Tl(X)

Zif= T(x)= X1 ]: T2

22 xp + 22} —sin(x)] T3,

Also, note that:

[x1] Zy

x2[=T71 (Z) = |Z, — 2Z% + sin(x;)

[ x3. 01

q:l =-X:3 = —X1— X3 =_Zl_q1

Z1 =X = x5 + 2x% — sin(x;)
=7, — 2Z% + sin(Z,) + 2Z% — sin(Z,) = Z,
Z, = X, + 4x,%; — X,c0s(x;)
Zy=q; —u+4Z,(Z, — 2Z% + sin(Z,) + 2Z? — sin(Z,)) — cos(Z,)(Z, — 27
+ sin(Z;) + 2Z% — sin(Z;)
=q,—u+4Z,Z, — Z,cos(Z;)
Then the linearizing feedback control law is : u = [q; + 4Z,Z, — K1 Z; — K, Z,]
Focusing on zero dynamic and assuming Z = 0
In tracking case for the reference signal (t) = sin(t) , now we will find the tracking Error:
let e=y—r(t)=x,—1(t) =2 é=x,—1r(t) =>é=j—+#
e =x3 —u+4x;x, +8x3 — 4x;5in(x;) — x,c0 s(x;) — 2x2co s(x;)
+ sin(x;) co s(x;) + sin(t)
U =x3 —u+4x,x, +8x3 — 4 x;5in(x;) — x,c0 s(x;) — 2x%co s(x;)
+ sin(x;) cos(x;) + sin(t) — K,e — K,é
By using MATLAB software to calculate the control input u and applying it to the system
model, we get the response as shown in figures (2), (3) and(4) . As we will that figure (2)
show that the output y asymptotically tracks the reference signal r(t) = sin(t) and the
figure (3) show the system state versus time x, and figure (4) show the Error dynamics
versus time.
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The output v tracks the reference signal _r

Cutput Signal
Reference Signal

Xt
i

0 2 4 6 8 10 12 14 16 18 20
Time (sec)

Figure (2) The Output Y tracks The Reference Signal r = sin (t)

plant versus time

1
0 2 4 6 g 10 12 14 16 18 20
Time (Sec)

Figure (3) the system states verses time
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Error dynamics versus time
0-08 : : : : : : : : '

0 2 4 6 8 10 12 14 16 18 20
Time (sec)

Figure (4) show the Error Dynamics verses time

Ball and Beam Experiment:
Here, we will simulate the ball and beam experiment given of the ball and beam
handout on the web site and repeated here for convenience:

2
Ieta:%,b:mg,c:r

71
b R
=2 +m, e=KyK, , f="200
r2 KmKg

Moreover, let z;= X, z,- X, Z3-¢ , Z,— ¢ , the ball and beam system can be represented as
Z1= Z,

where J,= %mr2 is the moment of inertia of the ball.

Z, = % Z,22 - Z sin( cz3)
Z3 = 7,
Zy= Yin ¢ V4
4 f f. 4 - - - -
Where the input is V;,, and the output equation is givenby — y=x=12,

For the simulation, we will use the following system parameters:

= Motor torque constant, k,,= 0.00767 N . m / amp

= Armature resistance, R,, = 2.6 ohm

= Equivalent moment of inertia, /., = 0.0029 kg. m?

» Gear ratio, k,=70

= Radius of the gear,r =2 cm

= Length of the beam, | = 34 cm

= Gravitational force constant, g = 9.8 m/s2

= Mass of the ball, m = 0.68 kg
In this system we want to show that it’s not input-output feedback linearizable and why is
this case. Although we cannot apply the standard feedback linearizable technique to this
system and we will use approximate feedback linearization instead. Note that term

2—;zlz4Vin from y® can be expected to be small in magnitude when the state is close to
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the equilibrium. Furthermore, we will simply ignore this term and proceed and we can
show that by doing this the system has relative degree 4. In addition, we will design a
feedback linearizing controller based on the approximate feedback linearization idea and
simulate it on the plant and show via plots that the controller regulates the position of the

ball to zero.
The output should be differentiated until the input appear:
Yy=2
y=124, = Z;
. . a , a .
y=27Z,= pl 125 — Esm(cZ3)
.ooa .. a . b
y = E Zl Z4_ + ZEZ1Z4Z; - E CZ4_COSISCZ3)
y = dZ2Z4 + 2 le4 ( f - ?Z4) - ECZ4COS(CZ3)
.. a b 2a

= y = 52224 d lez4_ dCZ4 COS(CZ3) + lez4Vm

u = —)[ f(2) +v]
Where
f(2) = 22,2222 57 72 —BCZ cos(cZs3)

- d 244 d f 144 d 4 3
2a

g(z) = de1Z4

The control coefficient g(z) is zero whether the beam angular velocity Z, or ball position
Z, are going to zero. And, the exact input output feedback linearization approach is not
applicable for this system. Also, at this part the beam angular velocity z,_ 4 is zero as well
see the ball position from the center of the beam z,= x, and the method of input-output
feedback linearizable IOFL is not practical for this system.

We cannot apply the standard feedback linearization IOFL technique to this system, so we

will use approximate feedback linearization technique is to drop the Z_;le‘*vin from y®

can expected to be small in magnitude when the state is close to the Equilibrium. We will

simply ignore this term and then derivative the output y until we get u. Therefore, this
system has relative degree 4 and design a feedback linearizing controller based on the
approximate feedback linearization show via plots that the controller regulates the position
of the ball to zero.

b 2a
ZlZ4 ——cZ,cos(cZ3) +

y = EZZZAI- - Zd f d lez4Vm
w_ % . 2ae ., ., 4ae . b .
y = 52224 + 232424 - ﬁzlzzl_ - FZ:[ZALZ‘I_ - ECZ4 COS(CZ3)

b
+ Ecszsin(czg,)
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@ _ ab b
y d2 21Z4_ 4de2Z4_ + 4‘de ZIZ4_ dz Z4_ Sln(CZ3) + _C Z4 Sll’l(CZ3)
b 2a 4ae
df —cZ, cos(cZsy) + fZZZ4 e —ZZ, — df cos(cZ3)Vm
Zy =X
Jfl == ZZ == xz
Xy = Z3
X3 = Z,
Xy = y®
Here, we will simply show that by doing this the system has relative degree 4.
= = [—f(2) +v] We have to find that:
(2)
a? e? ab b
f(z) = ZlZ4 4df 7,75 + 4df2 7,72 — 72 —ZZsin(cZ3) + 7€ 274 sin(cZ3)
4ae
df cZ4 cos(cZs) + szZ4 e —Z1Z,
g(z) = —cos(cZ3)

df
Then

u=v=-Ky—Ky—Ky—Ky

The Qutput Regulates to Zero
0.05 T T

L —— e e — -
003f - Lo e e S e e -
0.02F —-f--oo SR S S — A R -

0.01}-----boeeenena] AR S S S S -

001 |- - T —————m- S o -

002 i i i i i
0 10 20 30 40 50 60
Time (sec)

Figure (5) show the position of the ball regulates to zero
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Conclusion:

According to the results we got from this paper that the first system was examined to check
if it’s a state feedback linearizable or not. Then a state feedback control law was designed
to stabilize the origin to zero from non-zero initial condition. Moreover, we have found the
system is a state feedback linearzable and globally diffeomorphism. The second system
was tested to know if it’s possible to apply an input-output feedback linearization. Then a
state feedback control law was designed such that the output y asymptotically tracks the
reference signal r(t)=sin(t).

Finally in the third system a simulation of a Ball beam experiment was implemented also
the experiment was checked if it is Input-output state feedback linearizable or not. And
how can we apply a feedback approximate linearization instead of IOSF because 10SF
cannot be applied on this experiment.
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